Arid Land Geography ›› 2024, Vol. 47 ›› Issue (4): 684-694.doi: 10.12118/j.issn.1000-6060.2023.234
• Regional Development • Previous Articles Next Articles
Received:
2023-05-18
Revised:
2023-07-18
Online:
2024-04-25
Published:
2024-05-17
Contact:
LIU Zhenling
E-mail:btxuwei2006@126.com;m17861856998@163.com
XU Wei, LIU Zhenling. Spatial suitability and emission reduction benefits of photovoltaic development in Inner Mongolia[J].Arid Land Geography, 2024, 47(4): 684-694.
Tab. 1
Data sources and pre-processing methods"
数据名称 | 处理方法 | 数据来源 |
---|---|---|
整体水平辐照 | 多年平均值 | Global Solar Atl-as2.0 |
归一化植被指数 | 2012—2022年平均值 | 美国航空航天局发布的MODISMOD13A1产品 |
土地利用类型 | 按照用地类型把研究区域划分为限制区和非限制区2类,并剔除 限制区 | 全球地表覆盖数据库Globeland30(2020版) |
气温 | 采用Anusplin插值软件进行空间插值 | 中国气象科学数据共享服务网 |
降水量、风速、日照时数 | 借助ArcMap 10.8软件采用Kriging法进行空间插值 | 中国气象科学数据共享服务网 |
道路、居民点、保护区、河流 | 欧氏距离分析 | 全国基础地理数据库 |
数字高程模型 | 生成坡度和坡向数据 | 地理空间数据云平台 |
Tab. 5
Area of land of different suitable types in each city and league /km²"
城市 | 特别适宜区面积 | 较适宜区面积 | 适宜区面积 | 较不适宜区面积 | 不适宜区面积 |
---|---|---|---|---|---|
阿拉善盟 | 39438.75 | 155277.57 | 27985.94 | 192.90 | 0.00 |
巴彦淖尔市 | 9395.69 | 16386.60 | 283.85 | 57.91 | 0.00 |
包头市 | 0.00 | 377.99 | 631.88 | 0.00 | 0.00 |
赤峰市 | 1350.10 | 0.00 | 1924.86 | 884.82 | 82.40 |
鄂尔多斯市 | 0.00 | 7740.21 | 4484.42 | 0.00 | 0.00 |
呼和浩特市 | 0.00 | 0.00 | 102.25 | 0.00 | 0.00 |
呼伦贝尔市 | 0.00 | 0.00 | 312.45 | 2698.23 | 231.62 |
通辽市 | 0.00 | 0.00 | 173.91 | 926.48 | 220.17 |
乌海市 | 0.00 | 85.32 | 57.91 | 0.00 | 0.00 |
乌兰察布市 | 0.00 | 1493.56 | 3637.92 | 0.00 | 0.00 |
锡林郭勒盟 | 0.00 | 4648.07 | 4110.55 | 718.69 | 0.00 |
兴安盟 | 0.00 | 0.00 | 0.00 | 332.24 | 459.46 |
总面积 | 50184.54 | 186009.32 | 43705.94 | 5811.27 | 993.65 |
Tab. 6
Power generation potential of photovoltaic in Inner Mongolia Autonomous Region under different development scenarios"
开发情景 | 情景解释 | 面积/km2 | 发电潜力/TWh | |
---|---|---|---|---|
S1 | S1-Q1 | 特别适宜区开发25% | 12546.14 | 9148.11 |
S1-Q2 | 特别适宜区开发50% | 25092.27 | 18296.20 | |
S1-Q3 | 特别适宜区开发75% | 37638.41 | 27444.31 | |
S1-Q4 | 特别适宜区开发100% | 50184.54 | 36592.41 | |
S2 | S2-Q1 | 较适宜区开发 25% | 46502.33 | 33907.50 |
S2-Q2 | 较适宜区开发50% | 93004.66 | 67815.00 | |
S2-Q3 | 较适宜区开发75% | 139506.99 | 101722.50 | |
S2-Q4 | 较适宜区开发100% | 186009.32 | 135630.00 | |
S3 | S3-Q1 | 适宜区开发25% | 10926.49 | 7967.12 |
S3-Q2 | 适宜区开发50% | 21852.97 | 15934.25 | |
S3-Q3 | 适宜区开发75% | 32779.46 | 23901.37 | |
S3-Q4 | 适宜区开发100% | 43705.94 | 31868.50 |
Tab. 7
Emission reductions at different photovoltaic development intensities"
开发情景 | 情景解释 | 减排效果/t | ||||
---|---|---|---|---|---|---|
标准煤 | CO2 | SO2 | NOx | TSP | ||
S1 S1-Q1 | 特别适宜区开发25% | 2.767×108 | 7.367×108 | 6.088×106 | 2.767×106 | 4.704×106 |
S1-Q2 | 特别适宜区开发50% | 5.535×108 | 1.473×109 | 1.218×107 | 5.535×106 | 9.409×106 |
S1-Q3 | 特别适宜区开发75% | 8.302×108 | 2.210×109 | 1.826×107 | 8.302×106 | 1.411×107 |
S1-Q4 | 特别适宜区开发100% | 1.107×109 | 2.947×109 | 2.435×107 | 1.107×107 | 1.882×107 |
S2 S2-Q1 | 较适宜区开发25% | 1.026×109 | 2.730×109 | 2.257×107 | 1.026×107 | 1.744×107 |
S2-Q2 | 较适宜区开发50% | 2.051×109 | 5.461×109 | 4.513×107 | 2.051×107 | 3.487×107 |
S2-Q3 | 较适宜区开发75% | 3.077×109 | 8.191×109 | 6.770×107 | 3.077×107 | 5.231×107 |
S2-Q4 | 较适宜区开发100% | 4.103×109 | 1.092×1010 | 9.026×107 | 4.103×107 | 6.975×107 |
S3 S3-Q1 | 适宜区开发25% | 2.410×108 | 6.416×108 | 5.302×106 | 2.410×106 | 4.097×106 |
S3-Q2 | 适宜区开发50% | 4.820×108 | 1.283×109 | 1.060×107 | 4.820×106 | 8.194×106 |
S3-Q3 | 适宜区开发75% | 7.230×108 | 1.925×109 | 1.591×107 | 7.230×106 | 1.229×107 |
S3-Q4 | 适宜区开发100% | 9.640×108 | 2.566×109 | 2.123×107 | 9.640×106 | 1.639×107 |
[1] | 王利珍, 谭洪卫, 庄智, 等. 基于GIS平台的我国太阳能光伏发电潜力研究[J]. 上海理工大学学报, 2014, 36(5): 491-496. |
[Wang Lizhen, Tan Hongwei, Zhuang Zhi, et al. Evaluation of the photovoltaic solar energy potential in China based on GIS platform[J]. Journal of Shanghai University of Technology, 2014, 36(5): 491-496. ] | |
[2] |
韩梦瑶, 熊焦, 刘卫东. 中国光伏发电的时空分布、竞争格局及减排效益[J]. 自然资源学报. 2022, 37(5): 1338-1351.
doi: 10.31497/zrzyxb.20220516 |
[Han Mengyao, Xiong Jiao, Liu Weidong. Spatio-temporal distribution, competitive development and emission reduction of China’s photovoltaic power generation[J]. Journal of Natural Resources, 2022, 37(5): 1338-1351. ]
doi: 10.31497/zrzyxb.20220516 |
|
[3] | Alami Merrouni A, Elwali Elalaoui F, Ghennioui A, et al. A GIS-AHP combination for the sites assessment of large-scale CSP plants with dry and wet cooling systems. Case study: Eastern Morocco[J]. Solar Energy, 2018, 166: 2-12. |
[4] | Vrinceanu A, Dumitrascu M, Kucsicsa G. Site suitability for photovoltaic farms and current investment in Romania[J]. Renewable Energy, 2022, 187: 320-330. |
[5] | Ruiz H S, Sunarso A, Ibrahim-Bathis K, et al. GIS-AHP multi criteria decision analysis for the optimal location of solar energy plants at indonesia[J]. Energy Reports, 2020, 6: 3249-3263. |
[6] | Noorollahi Y, Ghenaatpisheh Senani A, Fadaei A, et al. A framework for GIS-based site selection and technical potential evaluation of PV solar farm using Fuzzy-Boolean logic and AHP multi-criteria decision-making approach[J]. Renewable Energy, 2022, 186: 89-104. |
[7] | Hassaan M A, Hassan A, Al-Dashti H. GIS-based suitability analysis for siting solar power plants in Kuwait[J]. The Egyptian Journal of Remote Sensing and Space Science, 2021, 24(3): 453-461. |
[8] | Sun L, Jiang Y, Guo Q, et al. A GIS-based multi-criteria decision making method for the potential assessment and suitable sites selection of PV and CSP plants[J]. Resources, Conservation and Recycling, 2021, 168: 105306, doi: 10.1016/j.resconrec.2020.105306. |
[9] |
刘立程, 孙中孝, 吴锋, 等. 京津冀地区光伏开发空间适宜性及减排效益评估[J]. 地理学报, 2022, 77(3): 665-678.
doi: 10.11821/dlxb202203012 |
[Liu Licheng, Sun Zhongxiao, Wu Feng, et al. Evaluation of suitability and emission reduction benefits of photovoltaic development in Beijing-Tianjin-Hebei region[J]. Journal of Geography, 2022, 77(3): 665-678. ] | |
[10] | Yushchenko A, De Bono A, Chatenoux B, et al. GIS-based assessment of photovoltaic (PV) and concentrated solar power (CSP) generation potential in West Africa[J]. Renewale & Sustainable Energy Reviews, 2018, 81: 2088-2103. |
[11] |
江东, 王娣, 付晶莹, 等. 内蒙古自治区未利用土地可再生能源潜力评估[J]. 科技导报, 2020, 38(11): 60-69.
doi: 10.3981/j.issn.1000-7857.2020.11.007 |
[Jiang Dong, Wang Di, Fu Jingying, et al. Assessment of potential of renewable energy to be proclaced on unused land in Inner Mongolia Autonomous Region[J]. Science and Technology Herald, 2020, 38(11): 60-69. ] | |
[12] | Charabi Y, Gastli A. PV site suitability analysis using GIS-based spatial fuzzy multi-criteria evaluation[J]. Renewable Energy, 2011, 36(9): 2554-2561. |
[13] | Villacreses G, Martínez-Gómez J, Jijón D, et al. Geolocation of photovoltaic farms using geographic information systems (GIS) with multiple-criteria decision-making (MCDM) methods: Case of the Ecuadorian energy regulation[J]. Energy Reports, 2022, 8: 3526-3548. |
[14] | 董秋霞, 董樊丽, 耿涌, 等. 碳达峰碳中和背景下内蒙古绿色低碳发展的路径和对策建议[J]. 科学管理研究, 2022, 40(6): 77-83. |
[Dong Qiuxia, Dong Fanli, Geng Yong, et al. The path and countermeasures of green and low-carbon development in Inner Mongolia under the background of carbon peak and neutrality[J]. Science Management Research, 2022, 40(6): 77-83. ] | |
[15] |
Giamalaki M, Tsoutsos T. Sustainable siting of solar power installations in Mediterranean using a GIS/AHP approach[J]. Renewable Energy, 2019, 141: 64-75.
doi: 10.1016/j.renene.2019.03.100 |
[16] | 吕玉坤, 杨宇星, 赵伟萍. 低风速环境下光伏组件积灰特性模拟研究[J]. 电源技术, 2021, 45(6): 801-804, 827. |
[Lü Yukun, Yang Yuxing, Zhao Weiping. Ash deposition characteristics of photovoltaic modules under low wind speed numerical simulation[J]. Power Technology, 2021, 45(6): 801-804, 827. ] | |
[17] | Raza M A, Yousif M, Hassan M, et al. Site suitability for solar and wind energy in developing countries using combination of GIS-AHP: A case study of Pakistan[J]. Renewable Energy, 2023, 206: 180-191. |
[18] | Huang T, Wang S, Yang Q, et al. A GIS-based assessment of large-scale PV potential in China[J]. Cleaner Energy for Cleaner Cities, 2018, 152: 1079-1084. |
[19] | 叶小伟, 乔建芳. 乌兹别克斯坦可再生能源现状及中乌合作建议[J]. 干旱区地理, 2022, 45(4): 1313-1319. |
[Ye Xiaowei, Qiao Jianfang. Current situation of renewable energy in Uzbekistan and suggestions on China-Uzbekistan cooperation[J]. Arid Land Geography, 2022, 45(4): 1313-1319. ] | |
[20] | Zhao L, Jia K, Liu X, et al. Assessment of land degradation in Inner Mongolia between 2000 and 2020 based on remote sensing data[J]. Geography and Sustainability, 2023, 4(2): 100-111. |
[21] | Li X, Mauzerall D L, Bergin M H. Global reduction of solar power generation efficiency due to aerosols and panel soiling[J]. Nature Sustainability, 2020, 3(9): 720-727. |
[22] | 达成, 张富涛, 钱勇生, 等. 关中平原城市群“交通-产业-环境”耦合协调发展的动态演化特征分析[J]. 干旱区地理, 2022, 45(3): 955-965. |
[Da Cheng, Zhang Futao, Qian Yongsheng, et al. Dynamic evolution characteristics of coordinated development of transportation-industry-environment in Guanzhong Plain urban agglomeration[J]. Arid Land Geography, 2022, 45(3): 955-965. ] |
[1] | NIU Yiying, LI Chunlan, WANG Jun, XU Hanqing, LIU Qing. Performance evaluation of ERA5 reanalysis precipitation data and spatiotemporal characteristics of extreme precipitation in Inner Mongolia [J]. Arid Land Geography, 2023, 46(9): 1418-1431. |
[2] | NING Jing, ZHU Ran, ZHANG Xinyuan, CHEN Kai. Evaluation and analysis of urban resilience of districts and counties in Inner Mongolia [J]. Arid Land Geography, 2023, 46(7): 1217-1226. |
[3] | SA Rigai, BAO Yuhai, DOU Yinyin, DONG Yulin, PAN Tao, KUANG Wenhui. Impacts of urban and rural construction on ecosystem productivity in Inner Mongolia Plateau from 2000 to 2020 [J]. Arid Land Geography, 2023, 46(6): 922-933. |
[4] | PAN Xue, GUAN Yuqi, PAN Zhandong, LIU Jie, CAI Liqun, DONG Bo, DU Jian. Spatiotemporal variation and evaluation of cultivated land quality grade in arid areas: A case of Xining City [J]. Arid Land Geography, 2023, 46(5): 793-803. |
[5] | ZHOU Haitao, MA Yusong, FAN Yayu, NING Xiaoli. Spatial distribution and accessibility analysis of red tourism resources in Inner Mongolia [J]. Arid Land Geography, 2023, 46(5): 814-822. |
[6] | DONG Youming, QIAO Wenyi, LIU Zemiao, HUANG Xianjin. Characteristics of rural restructuring and problem areas identification in agro-pastoral area of northern China: A case of the Inner Mongolia section in the Yellow River Basin [J]. Arid Land Geography, 2023, 46(11): 1891-1902. |
[7] | ZHANG Jianing, YAO Linjie, ZHANG Hengrui, ZHAO Yanyun, ZHANG Qing, LIU Pengtao. Ecological footprint and sustainable utilization of grassland resources in Inner Mongolia [J]. Arid Land Geography, 2022, 45(6): 1988-2003. |
[8] | XIE Conghui,WU Shixin,LIN Juan,ZHUANG Qingwei,ZHANG Zihui,HOU Guanyu,LUO Geping. Analysis of cultivated land salinization in Kashgar Oasis based on PSO-PNN model [J]. Arid Land Geography, 2022, 45(5): 1547-1558. |
[9] | JIN Ling,WANG Yongfang,GUO Enliang,LIU Guixiang,BAO Yulong. Evaluation of drought hazards in Inner Mongolia based on SPEIbase v.2.6 dataset [J]. Arid Land Geography, 2022, 45(3): 695-705. |
[10] | ZHAI Yongguang,ZHANG Xin,JI Honglan,MOU Xianyou,ZHANG Baosen. Ice-water classification in Inner Mongolia reach of the Yellow River based on remote sensing images [J]. Arid Land Geography, 2022, 45(3): 763-773. |
[11] | TANG Yuanhang,LI Mengqi,DENG Ling,WANG Xiaoli. Glacier change and its response to climate change in Pumqu Basin during 1990—2020 [J]. Arid Land Geography, 2022, 45(1): 27-36. |
[12] | Baoleerqimuge . Variation characteristics of dry spell in desert steppe of Inner Mongolia during 1960—2020 [J]. Arid Land Geography, 2022, 45(1): 46-56. |
[13] | XING Lizhu,ZHANG Fangmin,HUANG Jin,LI Yunpeng. Spatial and temporal changes of high wind days over category 6 and above in Inner Mongolia from 1961 to 2018 [J]. Arid Land Geography, 2021, 44(5): 1290-1298. |
[14] | JIA Xin,LI Guoqing,WANG Gang,CAO Yu. Effects of wind farms on soil moisture in grassland [J]. Arid Land Geography, 2021, 44(4): 1125-1134. |
[15] | LU Zhuoyu,CUI Jianxin,ZHANG Xiaohong,LI Peng. Historical changes reconstruction of Tonghalake Lake in the Mu Us Sandy Land from Qing Dynasty to Republic of China [J]. Arid Land Geography, 2021, 44(4): 1083-1092. |
|