Arid Land Geography ›› 2023, Vol. 46 ›› Issue (6): 922-933.doi: 10.12118/j.issn.1000-6060.2022.442
• Ecology and Environment • Previous Articles Next Articles
SA Rigai1,2(),BAO Yuhai1,2(),DOU Yinyin3,DONG Yulin3,PAN Tao3,4,KUANG Wenhui3
Received:
2022-09-06
Revised:
2022-10-31
Online:
2023-06-25
Published:
2023-07-24
SA Rigai, BAO Yuhai, DOU Yinyin, DONG Yulin, PAN Tao, KUANG Wenhui. Impacts of urban and rural construction on ecosystem productivity in Inner Mongolia Plateau from 2000 to 2020[J].Arid Land Geography, 2023, 46(6): 922-933.
Tab. 1
Data sources"
数据类型 | 子类型 | 空间分辨率 | 年份 | 来源 |
---|---|---|---|---|
土地利用/覆盖数据 | - | 30 m | 2000、2010、2020 | |
EVI数据 | - | 250 m | 2000—2020 | |
NPP数据 | - | 500 m | 2000—2021 | |
气象数据 | 降水量和气温 | 1 km | 2000—2020 | |
辅助数据 | 人口 | 1 km | 2000、2010、2020 | |
GDP | 1 km | 2000、2010、2020 | | |
DEM | 30 m | 2020 | | |
草地植被类型 | - | 1980 | | |
沙地边界 | - | 2020 | | |
行政区划 | 1:1000000 | 2020 | |
Tab. 2
Impacts of different types of urban and rural construction land expansion on ecosystems in Inner Mongolia Plateau from 2000 to 2020 /km2"
城乡开发建设用地类型 | 影响类型 | 农田 | 典型草原 | 荒漠草原 | 草甸草原 | 荒漠 | 森林 | 其他 |
---|---|---|---|---|---|---|---|---|
城市用地 | 占用 | 932.82 | 102.76 | 23.76 | 44.40 | 14.13 | 22.82 | 48.96 |
(12.50%) | (1.38%) | (0.32%) | (0.60%) | (0.19%) | (0.30%) | (0.65%) | ||
干扰 | 1173.88 | 141.39 | 57.45 | 114.65 | 71.63 | 92.70 | 126.27 | |
(10.23%) | (1.23%) | (0.50%) | (1.00%) | (0.62%) | (0.81%) | (1.10%) | ||
工矿用地 | 占用 | 751.60 | 845.54 | 582.88 | 193.87 | 869.19 | 206.43 | 329.73 |
(10.07%) | (11.33%) | (7.81%) | (2.60%) | (11.65%) | (2.77%) | (4.42%) | ||
干扰 | 1121.73 | 1286.86 | 832.25 | 355.37 | 1101.37 | 387.12 | 621.23 | |
(9.78%) | (11.22%) | (7.25%) | (3.10%) | (9.60%) | (3.37%) | (5.41%) | ||
农村居民点 | 占用 | 1675.64 | 223.03 | 97.36 | 138.04 | 98.89 | 124.13 | 137.01 |
(22.46%) | (2.99%) | ((1.28%) | (1.85%) | (1.33%) | (1.66%) | (1.84%) | ||
干扰 | 2276.39 | 377.28 | 234.05 | 252.04 | 266.77 | 235.44 | 348.20 | |
(19.84%) | (3.29%) | (2.04%) | (2.20%) | (2.33%) | (2.05%) | (3.03%) |
[1] |
Jiang H L, Xu X, Guan M X, et al. Determining the contributions of climate change and human activities to vegetation dynamics in agro-pastural transitional zone of northern China from 2000 to 2015[J]. Science of the Total Environment, 2020, 718: 134871, doi: 10.1016/j.scitotenv.2019.134871.
doi: 10.1016/j.scitotenv.2019.134871 |
[2] |
Christopher B F, James T R, Carolyn M M. Global net primary production: Combining ecology and remote sensing[J]. Remote Sensing Environment, 1995, 51: 74-85.
doi: 10.1016/0034-4257(94)00066-V |
[3] | Capistrano D, Samper C, Lee M J, et al. Ecosystems and human well-being: Multiscale assessments: Findings of the sub-global assessments working group of the millenium ecosystem assessment[M]. Washington, D.C: Island Press, 2005. |
[4] | 傅伯杰, 于丹丹, 吕楠. 中国生物多样性与生态系统服务评估指标体系[J]. 生态学报, 2017, 37(2): 341-348. |
[Fu Bojie, Yu Dandan, Lü Nan. An indicator system for biodiversity and ecosystem services evaluation in China[J]. Acta Ecologica Sinica, 2017, 37(2): 341-348.] | |
[5] | 许洁, 陈惠玲, 商沙沙, 等. 2000-2014年青藏高原植被净初级生产力时空变化及对气候变化的响应[J]. 干旱区地理, 2020, 43(3): 592-601. |
[Xu Jie, Chen Huiling, Shang Shasha, et al. Response of net primary productivity of Tibetan Plateau vegetation to climate change based on CEVSA model[J]. Arid Land Geography, 2020, 43(3): 592-601.] | |
[6] |
Seto K C, Guneralp B, Hutyra L. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(40): 16083-16088.
doi: 10.1073/pnas.1211658109 pmid: 22988086 |
[7] |
Huang Q, Liu Z, He C, et al. The occupation of cropland by global urban expansion from 1992 to 2016 and its implications[J]. Environmental Research Letters, 2020, 15(8): 084037, doi: 10.1088/1748-9326/ab858c.
doi: 10.1088/1748-9326/ab858c |
[8] |
Fu Y C, Lu X Y, Zhao Y L, et al. Assessment impacts of weather and land use/land cover (LULC) change on urban vegetation net primary productivity (NPP): A case study in Guangzhou, China[J]. Remote Sensing, 2013, 5(8): 4125-4144.
doi: 10.3390/rs5084125 |
[9] |
Yin X, Hens L. The influence of urbanization on vegetation carbon pools under a tele-coupling framework in China[J]. Environment Development and Sustainability, 2022, 24(3): 4046-4063.
doi: 10.1007/s10668-021-01603-w |
[10] | 茆杨, 蒋勇军, 张彩云, 等. 近20年来西南地区植被净初级生产力时空变化与影响因素及其对生态工程响应[J]. 生态学报, 2022, 42(7): 2878-2890. |
[Mao Yang, Jiang Yongjun, Zhang Caiyun, et al. Spatio-temporal changes and influencing factors of vegetation net primary productivity in southwest China in the past 20 years and its response to ecological engineering[J]. Acta Ecologica Sinica, 2022, 42(7): 2878-2890.] | |
[11] | 侯湖平, 张绍良, 丁忠义, 等. 基于植被净初级生产力的煤矿区生态损失测度研究[J]. 煤炭学报, 2012, 37(3): 445-451. |
[Hou Huping, Zhang Shaoliang, Ding Zhongyi, et al. Study on the measurement of ecological loss based on the net primary productivity in coal mines[J]. Journal of China Coal Society, 2012, 37(3): 445-451.] | |
[12] |
Buyantuyev A, Wu J. Urbanization alters spatiotemporal patterns of ecosystem primary production: A case study of the Phoenix Metropolitan region, USA[J]. Journal of Arid Environments, 2008, 73(4): 512-520.
doi: 10.1016/j.jaridenv.2008.12.015 |
[13] |
Xu C, Liu M, An S, et al. Assessing the impact of urbanization on regional net primary productivity in Jiangyin County, China[J]. Journal of Environmental Management, 2007, 85(3): 597-606.
pmid: 17234324 |
[14] |
迟文峰, 白文科, 刘正佳, 等. 基于RWEQ模型的内蒙古高原土壤风蚀研究[J]. 生态环境学报, 2018, 27(6): 1024-1033.
doi: 10.16258/j.cnki.1674-5906.2018.06.005 |
[Chi Wenfeng, Bai Wenke, Liu Zhengjia, et al. Wind erosion in Inner Mongolia Plateau using the revised wind erosion equation[J]. Ecology and Environmental Sciences, 2018, 27(6): 1024-1033.]
doi: 10.16258/j.cnki.1674-5906.2018.06.005 |
|
[15] | 吴晓光, 姚云峰, 迟文峰, 等. 1990-2015年内蒙古高原土壤风蚀时空差异特征[J]. 中国农业大学学报, 2020, 25(3): 117-127. |
[Wu Xiaoguang, Yao Yunfeng, Chi Wenfeng, et al. Spatio-temporal characteristics of soil wind erosion in Inner Mongolia Plateau from 1990 to 2015[J]. Journal of China Agricultural University, 2020, 25(3): 117-127.] | |
[16] |
Zhou D J, Zhao X, Hu H F, et al. Long-term vegetation changes in the four mega-sandy lands in Inner Mongolia, China[J]. Landscape Ecology, 2015, 30(9): 1613-1626.
doi: 10.1007/s10980-015-0151-2 |
[17] |
Zeng X, Liu Z, He C, et al. Quantifying surface coal-mining patterns to promote regional sustainability in Ordos, Inner Mongolia[J]. Sustainability, 2018, 10(4): 1135, doi: 10.3390/su10041135.
doi: 10.3390/su10041135 |
[18] |
白雪莲, 季树新, 王理想, 等. 鄂尔多斯十大孔兑区植被生产力变化趋势对土地利用转移的响应[J]. 自然资源学报, 2019, 34(6): 1186-1195.
doi: 10.31497/zrzyxb.20190605 |
[Bai Xuelian, Ji Shuxin, Wang Lixiang, et al. Response of change trend of vegetation productivity to land use conversion in Ten Tributaries Basin of Ordos[J]. Journal of Natural Resources, 2019, 34(6): 1186-1195.]
doi: 10.31497/zrzyxb.20190605 |
|
[19] | 白淑英, 吴奇, 沈渭寿, 等. 内蒙古草原矿区土地退化特征[J]. 生态与农村环境学报, 2016, 32(2): 178-186. |
[Bai Shuying, Wu Qi, Shen Weishou, et al. Characteristics of land degradation in mining areas of Inner Mongolia grassland[J]. Journal of Ecology and Rural Environment, 2016, 32(2): 178-186.] | |
[20] | 丁美慧, 孙泽祥, 刘志锋, 等. 中国北方农牧交错带城市扩展过程对植被净初级生产力影响研究--以呼包鄂地区为例[J]. 干旱区地理, 2017, 40(3): 614-621. |
[Ding Meihui, Sun Zexiang, Liu Zhifeng, et al. Impacts of urban expansion on net primary productivity in the agro-pastoral ecotone in northern China: A case of Hohhot-Baotou-Ordos region[J]. Arid Land Geography, 2017, 40(3): 614-621.] | |
[21] |
Sha Z Y, Zhong J L, Bai Y F, et al. Spatio-temporal patterns of satellite-derived grassland vegetation phenology from 1998 to 2012 in Inner Mongolia, China[J]. Journal of Arid Land, 2016, 8(3): 462-477.
doi: 10.1007/s40333-016-0121-9 |
[22] |
Liu J Y, Kuang W H, Zhang Z W, et al. Spatiotemporal characteristics, patterns, and causes of land-use changes in China since the late 1980s[J]. Journal of Geographical Sciences, 2014, 24(2): 195-210.
doi: 10.1007/s11442-014-1082-6 |
[23] |
匡文慧, 张树文, 杜国明, 等. 2015-2020年中国土地利用变化遥感制图及时空特征分析[J]. 地理学报, 2022, 77(5): 1056-1071.
doi: 10.11821/dlxb202205002 |
[Kuang Wenhui, Zhang Shuwen, Du Guoming, et al. Remotely sensed mapping and analysis of spatio-temporal patterns of land use change across China in 2015-2020[J]. Acta Geographica Sinica, 2022, 77(5): 1056-1071.]
doi: 10.11821/dlxb202205002 |
|
[24] |
闫慧敏, 刘纪远, 黄河清, 等. 城市化和退耕还林草对中国耕地生产力的影响[J]. 地理学报, 2012, 67(5): 579-588.
doi: 10.11821/xb201205001 |
[Yan Huimin, Liu Jiyuan, Huang Heqing, et al. Impacts of cropland transformation on agricultural production under urbanization and grain for green project in China[J]. Acta Geographica Sinica, 2012, 67(5): 579-588.]
doi: 10.11821/xb201205001 |
|
[25] |
Peng S Z, Ding Y X, Liu W Z, et al. 1 km monthly temperature and precipitation dataset for China from 1901 to 2017[J]. Earth System Science Data, 2019, 11: 1931-1946.
doi: 10.5194/essd-11-1931-2019 |
[26] |
Ma Q, He C Y, Fang X N. A rapid method for quantifying landscape-scale vegetation disturbances by surface coal mining in arid and semiarid regions[J]. Landscape Ecology, 2018, 33(8): 2061-2070.
doi: 10.1007/s10980-018-0726-9 |
[27] |
Ma Q, Wu J, He C, et al. The speed, scale, and environmental and economic impacts of surface coal mining in the Mongolian Plateau[J]. Resources Conservation and Recycling, 2021, 173(3): 105730, doi: 10.1016/j.resconrec.2021.105730.
doi: 10.1016/j.resconrec.2021.105730 |
[28] | Zhang C, Kuang W H, Wu J G, et al. Industrial land expansion in rural China threatens environmental securities[J]. Frontiers of Environmental Science & Engineering, 2021, 15(2): 2095-2201. |
[29] | 高晓亮, 王志良, 刘冀伟, 等. 基于灰度特征统计的可变区域图像分割算法[J]. 光学学报, 2011, 31(1): 198-203. |
[Gao Xiaoliang, Wang Zhiliang, Liu Jiwei, et al. Variable domain algorithm for image segmentation using statistical models based on intensity features[J]. Acta Optica Sinica, 2011, 31(1): 198-203.] | |
[30] |
乌兰图雅. 蒙古高原草地利用特征及其国别差异[J]. 地理学报, 2021, 76(7): 1722-1731.
doi: 10.11821/dlxb202107011 |
[Wulan Tuya. Characteristics of grassland utilization in Mongolian Plateau and their differences among countries[J]. Acta Geographica Sinica, 2021, 76(7): 1722-1731.]
doi: 10.11821/dlxb202107011 |
|
[31] |
阿荣, 毕其格, 董振华. 基于MODIS/NDVI的锡林郭勒草原植被变化及其归因[J]. 资源科学, 2019, 41(7): 1374-1386.
doi: 10.18402/resci.2019.07.17 |
[A Rong, Bi Qige, Dong Zhenhua. Change of grassland vegetation and driving factors based on MODIS/NDVI in Xilingol, China[J]. Resources Science, 2019, 41(7): 1374-1386.]
doi: 10.18402/resci.2019.07.17 |
|
[32] | Heidenreich B. What are global temperature grasslands worth? A case for their protection[M]. Canada: West Georgia Street, Van couver, BC, 2009. |
[33] | Kuang W H, Liu J Y, Tian H Q, et al. Cropland redistribution to marginal lands undermines environmental sustainability[J]. National Science Review, 2022, 9(1): 66-78. |
[34] |
He C Y, Liu Z F, Min X, et al. Urban expansion brought stress to food security in China: Evidence from decreased cropland net primary productivity[J]. Science of the Total Environment, 2017, 576(15): 660-670.
doi: 10.1016/j.scitotenv.2016.10.107 |
[35] |
Gang C C, Zhao W, Zhao T, et al. The impacts of land conversion and management measures on the grassland net primary productivity over the Loess Plateau, northern China[J]. Science of the Total Environment, 2018, 645: 827-836.
doi: 10.1016/j.scitotenv.2018.07.161 |
[36] | 于娜, 赵媛媛, 丁国栋, 等. 基于生态足迹的中国四大沙地地区可持续评价[J]. 干旱区地理, 2018, 41(6): 1310-1320. |
[Yu Na, Zhao Yuanyuan, Ding Guodong, et al. Sustainability assessment in four sandy lands of China based on the ecological footprint model[J]. Arid Land Geography, 2018, 41(6): 1310-1320.] | |
[37] |
常亚斌, 朱睿, 肖生春, 等. 1980-2015年阿拉善盟沙地面积变化及其驱动因子[J]. 中国沙漠, 2020, 40(6): 82-90.
doi: 10.7522/j.issn.1000-694X.2020.00074 |
[Chang Yabin, Zhu Rui, Xiao Shengchun, et al. Sandy land change from 1980 to 2015 in Alxa League, China and its driving factors[J]. Journal of Desert Research, 2020, 40(6): 82-90.]
doi: 10.7522/j.issn.1000-694X.2020.00074 |
|
[38] |
马永桃, 任孝宗, 胡慧芳, 等. 基于地理探测器的浑善达克沙地植被变化定量归因[J]. 中国沙漠, 2021, 41(4): 195-204.
doi: 10.7522/j.issn.1000-694X.2021.00066 |
[Ma Yongtao, Ren Xiaozong, Hu Huifang, et al. Vegetation dynamics and its driving force in Otindag Sandy Land based on Geodetector[J]. Journal of Desert Research, 2021, 41(4): 195-204.]
doi: 10.7522/j.issn.1000-694X.2021.00066 |
|
[39] | 欧阳玲, 马会瑶, 王宗明, 等. 基于遥感与地理信息数据的科尔沁沙地生态环境状况动态评价[J]. 生态学报, 2022, 42(14): 1-16. |
[Ouyang Ling, Ma Huiyao, Wang Zongming, et al. Dynamic evaluation of ecological environment in Horqin Sandy Land based on remote sensing and geographic information data[J]. Acta Ecologica Sinica, 2022, 42(14): 1-16.] |
|