Arid Land Geography ›› 2024, Vol. 47 ›› Issue (4): 672-683.doi: 10.12118/j.issn.1000-6060.2023.262
• Biology and Pedology • Previous Articles Next Articles
ZHANG Xuhui1(), Yusufujiang RUSULI1,2(), QIU Zhongli1, Yaxiaer AISIKEER1, Abudureheman WUSIMAN1
Received:
2023-06-06
Revised:
2023-07-24
Online:
2024-04-25
Published:
2024-05-17
Contact:
Yusufujiang RUSULI
E-mail:philamour@163.com;Yusupjan@xjnu.edu.cn
ZHANG Xuhui, Yusufujiang RUSULI, QIU Zhongli, Yaxiaer AISIKEER, Abudureheman WUSIMAN. Remote sensing identification and assessment of crops in the Yanqi Basin, Xinjiang, China based on Sentinel-2 time series data[J].Arid Land Geography, 2024, 47(4): 672-683.
Tab. 1
Sentinel-2 image data for the study area"
序号 | 传感器类型及产品序号 | 影像获取时间 (年-月-日) | 光谱波段 | 空间分辨率/m | 云量/% |
---|---|---|---|---|---|
1 | S2_L2A_45TUG_20220304 | 2022-03-04 | B2、B3、B4、B5、B6、B7、B8、B8a、B11、B12 | 10、20 | <10 |
2 | S2_L2A_45TUG_20220403 | 2022-04-03 | B2、B3、B4、B5、B6、B7、B8、B8a、B11、B12 | 10、20 | <10 |
3 | S2_L2A_45TUG_20220503 | 2022-05-03 | B2、B3、B4、B5、B6、B7、B8、B8a、B11、B12 | 10、20 | <10 |
4 | S2_L2A_45TUG_20220605 | 2022-06-05 | B2、B3、B4、B5、B6、B7、B8、B8a、B11、B12 | 10、20 | <10 |
5 | S2_L2A_45TUG_20220705 | 2022-07-05 | B2、B3、B4、B5、B6、B7、B8、B8a、B11、B12 | 10、20 | <10 |
6 | S2_L2A_45TUG_20220804 | 2022-08-04 | B2、B3、B4、B5、B6、B7、B8、B8a、B11、B12 | 10、20 | <10 |
7 | S2_L2A_45TUG_20220903 | 2022-09-03 | B2、B3、B4、B5、B6、B7、B8、B8a、B11、B12 | 10、20 | <10 |
8 | S2_L2A_45TUG_20221003 | 2022-10-03 | B2、B3、B4、B5、B6、B7、B8、B8a、B11、B12 | 10、20 | <10 |
9 | S2_L2A_45TUG_20221102 | 2022-11-02 | B2、B3、B4、B5、B6、B7、B8、B8a、B11、B12 | 10、20 | <10 |
Tab. 2
Statistics of feature samples in the study area"
样本类别 | 样本总数 | 5:5 | 6:4 | 7:3 | 8:2 | 9:1 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
训练数 | 检验数 | 训练数 | 检验数 | 训练数 | 检验数 | 训练数 | 检验数 | 训练数 | 检验数 | ||||||
番茄 | 190 | 95 | 95 | 114 | 76 | 133 | 57 | 152 | 38 | 171 | 19 | ||||
甘草 | 70 | 35 | 35 | 42 | 28 | 49 | 21 | 56 | 14 | 63 | 7 | ||||
葵花 | 180 | 90 | 90 | 108 | 72 | 126 | 54 | 144 | 36 | 162 | 18 | ||||
辣椒 | 289 | 145 | 144 | 173 | 116 | 202 | 87 | 231 | 58 | 260 | 29 | ||||
芦苇 | 120 | 60 | 60 | 72 | 48 | 84 | 36 | 96 | 24 | 108 | 12 | ||||
棉花 | 125 | 63 | 62 | 75 | 50 | 88 | 37 | 100 | 25 | 113 | 12 | ||||
葡萄 | 190 | 95 | 95 | 114 | 76 | 133 | 57 | 152 | 38 | 171 | 19 | ||||
果林 | 70 | 35 | 35 | 42 | 28 | 49 | 21 | 56 | 14 | 63 | 7 | ||||
水稻 | 180 | 90 | 90 | 108 | 72 | 126 | 54 | 144 | 36 | 162 | 18 | ||||
甜菜 | 289 | 145 | 144 | 173 | 116 | 202 | 87 | 231 | 58 | 260 | 29 | ||||
小麦 | 120 | 60 | 60 | 72 | 48 | 84 | 36 | 96 | 24 | 108 | 12 | ||||
玉米 | 125 | 63 | 62 | 75 | 50 | 88 | 37 | 100 | 25 | 113 | 12 |
Tab. 4
Crop classification schemes"
分类模型 | 特征参数 | 波段数目 | 样本分割方案 |
---|---|---|---|
SVM-无红边 | B2、B3、B4、B8、B8a、B11、B12 | 7 | 5:5、6:4、7:3、8:2、9:1 |
SVM-有红边 | B2、B3、B4、B5、B6、B7、B8、B8a、B11、B12 | 10 | 5:5、6:4、7:3、 8:2、9:1 |
SVM-See5.0 | B8、EVI、B5、B6、TVI、B7、TCARI、NDVI705、GI、B3、B2、VIgreen、B4、NDVI740、NDWI、RNDVI、NDVI、NDVI783、MCARI、B11、B8a、SRI | 22 | 5:5、6:4、7:3、 8:2、9:1 |
SVM-RF | B8、NDVI705、B3、B6、TVI、B11、B2、B4、EVI、B7、MCARI、RNDVI、B8a、VIgreen、GI、B5、NDVI740、TCARI、GNDVI、NDWI | 20 | 5:5、6:4、7:3、8:2、9:1 |
SVM-MR | MCARI、NDVI、TCARI、SRI、TVI、VIgreen、NDVI783、MSR、B5、B4、B8a、EVI | 12 | 5:5、6:4、7:3、8:2、9:1 |
[1] | 唐华俊, 吴文斌, 杨鹏, 等. 农作物空间格局遥感监测研究进展[J]. 中国农业科学, 2010, 43(14): 2879-2888. |
[Tang Huajun, Wu Wenbin, Yang Peng, et al. Recent progresses in monitoring crop spatial patterns by using remote sensing technologies[J]. Scientia Agricultura Sinica, 2010, 43(14): 2879-2888. ] | |
[2] |
陈亚宁, 李玉朋, 李稚, 等. 全球气候变化对干旱区影响分析[J]. 地球科学进展, 2022, 37(2): 111-119.
doi: 10.11867/j.issn.1001-8166.2022.006 |
[Chen Yaning, Li Yupeng, Li Zhi, et al. Analysis of the impact of global climate change on dryland areas[J]. Advances in Earth Science, 2022, 37(2): 111-119. ]
doi: 10.11867/j.issn.1001-8166.2022.006 |
|
[3] |
刘珍环, 杨鹏, 吴文斌, 等. 近30年中国农作物种植结构时空变化分析[J]. 地理学报, 2016, 71(5): 840-851.
doi: 10.11821/dlxb201605012 |
[Liu Zhenhuan, Yang Peng, Wu Wenbin, et al. Spatio-temporal changes in Chinese crop patterns over the past three decades[J]. Acta Geographica Sinica, 2016, 71(5): 840-851. ]
doi: 10.11821/dlxb201605012 |
|
[4] |
胡琼, 吴文斌, 宋茜, 等. 农作物种植结构遥感提取研究进展[J]. 中国农业科学, 2015, 48(10): 1900-1914.
doi: 10.3864/j.issn.0578-1752.2015.10.004 |
[Hu Qiong, Wu Wenbin, Song Qian, et al. Recent progresses in research of crop patterns mapping by using remote sensing[J]. Scientia Agricultura Sinica, 2015, 48(10): 1900-1914. ]
doi: 10.3864/j.issn.0578-1752.2015.10.004 |
|
[5] | 杨雪峰. 使用高分遥感影像获取塔里木河胡杨高度信息[J]. 遥感技术与应用, 2021, 36(5): 1199-1208. |
[Yang Xuefeng. Estimation height of Populus euphratica in Tarim River using VHR satellite images[J]. Remote Sensing Technology and Application, 2021, 36(5): 1199-1208. ] | |
[6] | 梁继, 郑镇炜, 夏诗婷, 等. 高分六号红边特征的农作物识别与评估[J]. 遥感学报, 2020, 24(10): 1168-1179. |
[Liang Ji, Zheng Zhenwei, Xia Shiting, et al. Crop recognition and evaluation using red edge features of GF-6 satellite[J]. Journal of Remote Sensing, 2020, 24(10): 1168-1179. ] | |
[7] | Jia K, Wu B F, Li Q Z. Crop classification using HJ satellite multispectral data in the North China Plain[J]. Journal of Applied Remote Sensing, 2013, 7(1): 73576, doi: 10.1117/1.JRS.7.073576. |
[8] | 美合日阿依·莫一丁, 买买提·沙吾提, 李金朝, 基于Sentinel-2时间序列数据及物候特征的棉花种植区提取[J]. 干旱区地理, 2022, 45(6): 1847-1859. |
[Moyiding Meiheriayi, Shawuti Maimaiti, Li Jinzhao. Extraction of cotton planting area based on Sentinel-2 time series data and phenological characteristics[J]. Arid Land Geography, 2022, 45(6): 1847-1859. ] | |
[9] | Liangzhi Y, Stanley W, Ulrike W S. Generating plausible crop distribution maps for Sub-Saharan Africa using a spatially disaggregated data fusion and optimization approach[J]. Agricultural Systems, 2008, 99(2): 126-140. |
[10] | Chad M, Navin R, Jonathan A F. Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000[J]. Global Biogeochemical Cycles, 2008, 22(1): 1-19. |
[11] | Reichstein M, Camps V G, Stevens B, et al. Deep learning and process understanding for data-driven Earth system science[J]. Nature, 2019, 566(7743): 195-204. |
[12] | 许晴, 张锦水, 张凤, 等. 深度学习农作物分类的弱样本适用性[J]. 遥感学报, 2022, 26(7): 1395-1409. |
[Xu Qing, Zhang Jinshui, Zhang Feng, et al. Applicability of weak samples to deep learning crop classification[J]. Journal of Remote Sensing, 2022, 26(7): 1395-1409. ] | |
[13] | 贾银江, 姜涛, 苏中滨, 等. 基于改进SVM算法的典型作物分类方法研究[J]. 东北农业大学学报, 2020, 51(7): 77-85. |
[Jia Yinjiang, Jiang Tao, Su Zhongbin, et al. Study on classification method of typical crops based on improved SVM algorithm[J]. Journal of Northeast Agricultural University, 2020, 51(7): 77-85. ] | |
[14] | 梁习卉子, 陈兵旗, 李民赞, 等. 基于HOG特征和SVM的棉花行数动态计数方法[J]. 农业工程学报, 2020, 36(15): 173-181. |
[Liang Xihuizi, Chen Bingqi, Li Minzan, et al. Method for dynamic counting of cotton rows based on HOG feature and SVM[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(15): 173-181. ] | |
[15] |
边增淦, 王文, 江渊. 黑河流域中游地区作物种植结构的遥感提取[J]. 地球信息科学学报, 2019, 21(10): 1629-1641.
doi: 10.12082/dqxxkx.2019.190183 |
[Bian Zenggan, Wang Wen, Jiang Yuan. Remote sensing of cropping structure in the middle reaches of the Heihe River Basin[J]. Journal of Geoinformation Science, 2019, 21(10): 1629-1641. ] | |
[16] | 田鑫, 何海, 金双彦, 等. 基于遥感影像的张掖灌区作物种植结构提取研究[J]. 中国农村水利水电, 2022(8): 206-212, 217. |
[Tian Xin, He Hai, Jin Shuangyan, et al. Crop planting structure extraction in Zhangye irrigation area based on remote sensing images[J]. China Rural Water and Hydropower, 2022(8): 206-212, 217. ] | |
[17] | 郭其乐, 李军玲, 郭鹏. 基于作物双时相遥感特征的花生种植区提取[J]. 应用气象学报, 2022, 33(2): 218-230. |
[Guo Qile, Li Junling, Guo Peng. Extraction of peanut planting area based on dual-temporal remote sensing features of crops[J]. Journal of Applied Meteorological Science, 2022, 33(2): 218-230. ] | |
[18] | 付东杰, 肖寒, 苏奋振, 等. 遥感云计算平台发展及地球科学应用[J]. 遥感学报, 2021, 25(1): 220-230. |
[Fu Dongjie, Xiao Han, Su Fenzhen, et al. Remote sensing cloud computing platform development and Earth science application[J]. Journal of Remote Sensing, 2021, 25(1): 220-230. ] | |
[19] | 刘通, 任鸿瑞. GEE平台下利用物候特征进行面向对象的水稻种植分布提取[J]. 农业工程学报, 2022, 38(12): 189-196. |
[Liu Tong, Ren Hongrui. Object-oriented extraction of paddy rice planting areas using phenological features from the GEE platform[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(12): 189-196. ] | |
[20] | 潘力, 夏浩铭, 王瑞萌, 等. 基于Google Earth Engine的淮河流域越冬作物种植面积制图[J]. 农业工程学报, 2021, 37(18): 211-218. |
[Pan Li, Xia Haoming, Wang Ruimeng, et al. Mapping of the winter crop planting areas in Huaihe River Basin based on Google Earth Engine[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(18): 211-218. ] | |
[21] |
姜伊兰, 陈保旺, 黄玉芳, 等. 基于Google Earth Engine和NDVI时序差异指数的作物种植区提取[J]. 地球信息科学学报, 2021, 23(5): 938-947.
doi: 10.12082/dqxxkx.2021.200291 |
[Jiang Yilan, Chen Baowang, Huang Yufang, et al. Crop planting area extraction based on Google Earth Engine and NDVI time series difference index[J]. Journal of Geoinformation Science, 2021, 23(5): 938-947. ] | |
[22] | 程伟, 钱晓明, 李世卫, 等. 时空遥感云计算平台PIE-Engine Studio的研究与应用[J]. 遥感学报, 2022, 26(2): 335-347. |
[Cheng Wei, Qian Xiaoming, Li Shiwei, et al. Research and application of PIE-Engine Studio for spatiotemporal remote sensing cloud computing platform[J]. Journal of Remote Sensing, 2022, 26(2): 335-347. ] | |
[23] | 田颖, 陈卓奇, 惠凤鸣, 等. 欧空局哨兵卫星Sentinel-2A/B数据特征及应用前景分析[J]. 北京师范大学学报(自然科学版), 2019, 55(1): 57-65. |
[Tian Ying, Chen Zhuoqi, Hui Fengming, et al. ESA Sentinel-2A/B satellite: Characteristics and applications[J]. Journal of Beijing Normal University (Natural Science Edition), 2019, 55(1): 57-65. ] | |
[24] | 齐红超, 祁元, 徐瑱. 基于C5.0决策树算法的西北干旱区土地覆盖分类研究——以甘肃省武威市为例[J]. 遥感技术与应用, 2009, 24(5): 648-653, 553. |
[Qi Hongchao, Qi Yuan, Xu Zhen. The study of the northwest arid zone land-cover classification cased on C5.0 decision tree algorithm at Wuwei City, Gansu Province[J]. Remote Sensing Technology and Application, 2009, 24(5): 648-653, 553. ] | |
[25] | 许晴, 张锦水, 张凤, 等. 深度学习农作物分类的弱样本适用性[J]. 遥感学报, 2022, 26(7): 1395-1409. |
[Xu Qing, Zhang Jinshui, Zhang Feng, et al. Applicability of weak samples to deep learning crop classification[J]. Journal of Remote Sensing, 2022, 26(7): 1395-1409. ] | |
[26] | 张善红, 白红英, 齐贵增, 等. 基于多元线性回归模型和Anusplin的秦巴山区≥10 ℃积温空间模拟比较[J]. 水土保持研究, 2022, 29(1): 184-189, 196. |
[Zhang Shanhong, Bai Hongying, Qi Guizeng, et al. Spatial simulation of active accumulated temperature ≥10 ℃ in Qinling-Daba Mountains based on Anusplin and multiple linear regression model[J]. Research of Soil and Water Conservation, 2022, 29(1): 184-189, 196. ] | |
[27] | Giorgos M, Jungho I, Caesar O. Support vector machines in remote sensing: A review[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2010, 66(3): 247-259. |
[28] | 黄双燕, 杨辽, 陈曦, 等. 机器学习法的干旱区典型农作物分类[J]. 光谱学与光谱分析, 2018, 38(10): 3169-3176. |
[Huang Shuangyan, Yang Liao, Chen Xi, et al. Study of typical arid crops classification based on machine learning[J]. Spectroscopy and Spectral Analysis, 2018, 38(10): 3169-3176. ] | |
[29] | 牛乾坤, 刘浏, 黄冠华, 等. 基于GEE和机器学习的河套灌区复杂种植结构识别[J]. 农业工程学报, 2022, 38(6): 165-174. |
[Niu Qiankun, Liu Liu, Huang Guanhua, et al. Extraction of complex crop structure in the Hetao Irrigation District of Inner Mongolia using GEE and machine learning[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(6): 165-174. ] | |
[30] | 谷祥辉, 张英, 桑会勇, 等. 基于哨兵2时间序列组合植被指数的作物分类研究[J]. 遥感技术与应用, 2020, 35(3): 702-711. |
[Gu Xianghui, Zhang Ying, Sang Huiyong, et al. Research on crop classification method based on Sentinel-2 time series combined vegetation index[J]. Remote Sensing Technology and Application, 2020, 35(3): 702-711. ] | |
[31] | 郭交, 朱琳, 靳标. 基于Sentinel-1和Sentinel-2数据融合的农作物分类[J]. 农业机械学报, 2018, 49(4): 192-198. |
[Guo Jiao, Zhu Lin, Jin Biao. Crop classification based on data fusion of Sentinel-1 and Sentinel-2[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(4): 192-198. ] | |
[32] | 薛朝辉, 钱思羽. 融合Landsat 8与Sentinel-2数据的红树林物候信息提取与分类[J]. 遥感学报, 2022, 26(6): 1121-1142. |
[Xue Zhaohui, Qian Siyu. Fusion of Landsat 8 and Sentinel-2 data for mangrove phenology information extraction and classification[J]. Journal of Remote Sensing, 2022, 26(6): 1121-1142. ] |
[1] | YANG Yifei, YANG Pengnian, WANG Changshu, KOU Xin, TAN Fan, XU Jie, WANG Cui. Effectiveness evaluation of water consumption in agricultural land of Yanqi Basin, Xinjiang [J]. Arid Land Geography, 2023, 46(5): 730-741. |
[2] | ZHANG Ning,WANG Zichen,YANG Xiao,CHEN Tong,XING Fei. Coupling coordination and spatiotemporal differences between water resources and agriculture cropping system in Xinjiang: A case of grain and cotton cropping systems [J]. Arid Land Geography, 2023, 46(3): 349-359. |
[3] | JIANG Leipeng,DING Jianli,BAO Qingling,GE Xiangyu,LIU Jingming,WANG Jinjie. Runoff estimation with low altitude remote sensing and satellite images [J]. Arid Land Geography, 2023, 46(3): 385-396. |
[4] | FU Yinghao, SHEN Xiaojing, LI Wangcheng, WU Xu, ZHANG Qingqing. Applicability of reference crop evapotranspiration calculation based on Hargreaves-Samani regression correction [J]. Arid Land Geography, 2022, 45(6): 1752-1760. |
[5] | TAN Jin,WU Xiuqin,RUAN Yongjian,ZHANG Huan,FENG Mengxin,SHA Rina. Effects of crop residues on farmland wind erosion in Cyperus esculentus planting area [J]. Arid Land Geography, 2022, 45(2): 546-556. |
[6] | TAO Zefu,WANG Shiqing,SUN Piling,LI Kaidi,TIAN Wen,HAN Xiaoxiao. Spatio-temporal differentiation and driving factors of cropland in the agro-pastoral ecotone of northern China [J]. Arid Land Geography, 2022, 45(1): 153-163. |
[7] | WANG Qingping,QIN He,CHENG Haiyan,ZHANG Tiancheng,CHEN Chunyan. Cloud parameter characteristics of a β-mesoscale short-term rainstorm in the central of the northern slope of Tianshan Mountains [J]. Arid Land Geography, 2021, 44(6): 1580-1589. |
[8] | PAN Peichong,SHI Yang,ZHAO Zhifeng,WANG Jia,CAO Jiongwei,BAI Wenwen,XIE Hongwei,WEI Jiahua. Microphysical characteristics of precipitation under the intervention of acoustic over an inland arid region [J]. Arid Land Geography, 2021, 44(4): 906-913. |
[9] | SI Wen-yang, ZHANG Ming-jun, LIU Pu-xing. Spatial and temporal response differences to global warming hiatus of the thermophilic crops climate growth period in oases of China [J]. Arid Land Geography, 2020, 43(4): 899-908. |
[10] |
TAO Tao, ZHANG Li-xin, SANG Jian-ren, LV Jing-jing, NIE Jing-xin.
A case analysis of microphysical characteristics of atypical hail formation over Liupan Mountain,China [J]. Arid Land Geography, 2020, 43(2): 299-307. |
[11] | WANG Yan-feng, WANG Rong, WANG Ju-jie, YIN Xian-zhi. Cloud microphysical characteristics on a stratiform nephsystem in the arid and semi-arid regions of northwest China [J]. Arid Land Geography, 2019, 42(6): 1291-1300. |
[12] | XIONG Yuan-kang, ZHANG Qing-ling. Cropping structure extraction with [WTHX]NDVI[WTHZ] timeseries images in the northern Tianshan Economic Belt [J]. Arid Land Geography, 2019, 42(5): 1105-1114. |
[13] | BAI Yanying, GAO Julin, ZHANG Baolin. Extraction of crop planting structure based on timeseries NDVI of Landsat8 images [J]. Arid Land Geography, 2019, 42(4): 893-901. |
[14] | REN Xiulin, LI Hongliang, ZHANG Yuhu, PU Xiao, ZHANG Lilin. Water requirement characteristics and influencing factors of main crops in the Sanjiang Plain from 2000 to 2015 [J]. Arid Land Geography, 2019, 42(4): 854-866. |
[15] |
WANG Jie, LONG Aihua, YANG Guang, DENG Xiaoya, ZHANG Pei, HAI Yang, LI Yang.
Spatial relationship between crops water footprint and economic growth in Xinjiang in recent 25 years [J]. Arid Land Geography, 2019, 42(3): 526-533. |
|