收藏设为首页 广告服务联系我们在线留言

干旱区地理 ›› 2024, Vol. 47 ›› Issue (6): 922-931.doi: 10.12118/j.issn.1000-6060.2023.320 cstr: 32274.14.ALG2023320

• 气候与水文 • 上一篇    下一篇

气候变化对太阳能资源评估典型气象年选取的影响

樊静1(), 申彦波2(), 常蕊3   

  1. 1.新疆气候中心,新疆 乌鲁木齐 830001
    2.中国气象局公共服务中心,北京 100081
    3.国家气候中心,北京 100081
  • 收稿日期:2023-06-30 修回日期:2023-11-13 出版日期:2024-06-25 发布日期:2024-07-09
  • 通讯作者: 申彦波(1978-),男,博士,正研级高级工程师,主要从事太阳能资源评估及气候变化方面的研究. E-mail: shenyb@cma.gov.cn
  • 作者简介:樊静(1980-),女,高级工程师,主要从事风能太阳能资源的综合评估、气候变化相关的研究. E-mail: fanjing365@126.com
  • 基金资助:
    中国气象局创新发展专项(CXFZ2023J044)

Impact of climate change on the selection of typical meteorological years in solar energy resource assessment

FAN Jing1(), SHEN Yanbo2(), CHANG Rui3   

  1. 1. Xinjiang Climate Center, Urumqi 830001, Xinjiang, China
    2. Public Meteorological Service Center of China Meteorological Administration, Beijing 100081, China
    3. National Climate Center of China Meteorological Administration, Beijing 100081, China
  • Received:2023-06-30 Revised:2023-11-13 Published:2024-06-25 Online:2024-07-09

摘要:

选取新疆8个辐射气象观测站1961—2022年逐日总辐射观测资料,分析新疆区域地面总辐射变化特征,利用风速、气温、湿度和露点温度等资料构建太阳能资源评估典型气象年挑选方法(Sandia法),对比分析1961—1990年、1971—2000年、1981—2010年、1991—2020年4个标准气候态下Sandia方法选取典型代表年的差异。结果表明:(1) 1961—2022年北疆地区地面总辐射呈先减少后增加的趋势,南疆和东疆持续减少但1990年代以后减少趋势放缓,秋、冬季辐射减少速率明显大于春、夏季。(2) Sandia方法选取的4个标准气候态下典型气象年总辐射年值与平均值接近,相对误差介于±3%之间。(3) 随着气象要素的变化,Sandia方法选取典型气象年总辐射与平均值的绝对误差在增大,北疆站点不同时期选取典型月总辐射与同期月均值的差异明显小于南疆和东疆,与北疆总辐射年际变化小于南疆和东疆的结果一致。(4) 新疆区域月总辐射的高值时段集中出现在6—7月,各站1—3月总辐射普遍大于10—12月。(5) Sandia法挑选典型月与月平均值的差异存在较大波动性,且1981—2000年、1991—2020年波动幅度明显大于之前2个时期,表明随着气候要素的变化,典型代表年的不确定性在增加。

关键词: 气候变化, 太阳能资源评估, 典型气象年, 新疆

Abstract:

The typical meteorological year (TMY) is crucial for assessing solar energy resources, significantly impacting the scientific evaluation of regional solar resource assessments and the optimal design of photovoltaic power generation systems. These systems directly influence the technical and economic performance of solar energy utilization. With ongoing climate warming, key indicators of the climate system have shown rapid changes. Over the past 60 years, global surface solar radiation initially decreased and then increased. However, since the 1980s, approximately 25% of observation stations have recorded a continuous decline, highlighting significant temporal and spatial variations in surface solar radiation. Xinjiang, China, a region sensitive to global climate changes, has experienced significant shifts in temperature, precipitation, and other meteorological elements. This study analyzes global horizontal irradiations (GHI) data collected from eight stations in Xinjiang from 1961 to 2022, examining temporal and spatial variations. Additionally, using wind speed, temperature, humidity, and dew point temperature data, we employed the Sandia method to select the TMY for solar energy resource assessment. We compared the differences in GHI TMY selected with the Sandia method every 30 years (four standard climatological normals of 1961—1990, 1971—2000, 1981—2010 and 1991—2020). The findings indicate that while GHI in northern Xinjiang initially decreased and then increased, it continued to decline in southern and eastern Xinjiang from 1961 to 2022. Post-1990s, the rate of decline slowed. Seasonally, GHI reduction rates in autumn and winter were notably higher than that in spring and summer. The GHI values of TMY calculated with the Sandia method were close to the annual average, with a relative error within ±3%. As meteorological elements changed, the absolute error between TMY with Sandia and the annual average increased. Furthermore, monthly GHI exhibited considerable volatility, with fluctuations notably larger between 1981—2000 and 1991—2020 compared to earlier periods. In these four periods, the variability in typical months was less in northern Xinjiang than that in the south and east due to smaller interannual GHI variations. The highest monthly GHI values in TMY typically occurred from June to July, while the values from January to March were generally higher than those from October to December.

Key words: climate change, solar energy resources, typical year, Xinjiang