[1] |
杨兴国, 秦大河, 秦翔. 冰川/积雪-大气相互作用研究进展[J]. 冰川冻土, 2012, 34(2): 392-402.
|
|
[Yang Xingguo, Qin Dahe, Qin Xiang, et al. Progress in the study of interaction between ice/snow and atmosphere[J]. Journal of Glaciology and Cryopedology, 2012, 34(2): 392-402.]
|
[2] |
Zhang T J. Influence of the seasonal snow cover on the ground thermal regime: An overview[J]. Reviews of Geophysics, 2005, 43(4): 2004RG000157, doi: 10.1029/2004RG000157.
|
[3] |
Henderson G R, Leathers D J, Hanson B. Circulation response to Eurasian versus North American anomalous snow scenarios in the northern Hemisphere with an AGCM coupled to a slab ocean model[J]. Journal of Climate, 2013, 26(5): 1502-1515.
|
[4] |
娄梦筠, 刘志红, 娄少明, 等. 2002—2011年新疆积雪时空分布特征研究[J]. 冰川冻土, 2013, 35(5): 1095-1102.
doi: 10.7522/j.issn.1000-0240.2013.0123
|
|
[Lou Mengyun, Liu Zhihong, Lou Shaoming, et al. Temporal and spatial distribution of snow cover in Xinjiang from 2002 to 2011[J]. Journal of Glaciology and Cryopedology, 2013, 35(5): 1095-1102.]
|
[5] |
Wu G X, He B, Duan A M, et al. Formation and variation of the atmospheric heat source over the Tibetan Plateau and its climate effects[J]. Advances in Atmospheric Sciences, 2017, 34(10): 1169-1184.
|
[6] |
阿力木·喀迪阿依, 如素力·玉素甫江, 艾克木·肉克亚木, 等. 2001—2017年艾比湖流域积雪时空变化及其驱动因子分析[J]. 生态科学, 2023, 42(3): 127-135.
|
|
[Kadiayi Alimu, Yusufujiang Rusuli, Roukeyamu Aikemu, et al. Temporal and spatial changes of snow cover in the Ebinur Lake Basin from 2001 to 2017 and analysis of its driving factors[J]. Ecological Science, 2023, 42(3): 127-135.]
|
[7] |
易颖, 刘时银, 朱钰, 等. 2002—2018年叶尔羌河流域积雪时空变化研究[J]. 干旱区地理, 2021, 44(1): 15-26.
doi: 10.12118/j.issn.1000–6060.2021.01.02
|
|
[Yi Ying, Liu Shiyin, Zhu Yu, et al. Spatiotemporal variation of snow cover in the Yarkant River Basin during 2002—2018[J]. Arid Land Geography, 2021, 44(1): 15-26.]
doi: 10.12118/j.issn.1000–6060.2021.01.02
|
[8] |
颜伟, 刘景时, 罗光明, 等. 基于MODIS数据的2000—2013年西昆仑山玉龙喀什河流域积雪面积变化[J]. 地理科学进展, 2014, 33(3): 315-325.
doi: 10.11820/dlkxjz.2014.03.003
|
|
[Yan Wei, Liu Jingshi, Luo Guangming, et al. Snow cover area changes in the Yurungkax River Basin of west Kunlun Mountains during 2000—2013 using MODIS data[J]. Progress in Geography, 2014, 33(3): 315-325.]
doi: 10.11820/dlkxjz.2014.03.003
|
[9] |
Duo C, Xie H J, Wang P X, et al. Snow cover variation over the Tibetan Plateau from MODIS and comparison with ground observations[J]. Journal of Applied Remote Sensing, 2014, 8(1): 084690, doi: 10.1117/1.JRS.8.084690.
|
[10] |
Huang X D, Deng J, Wang W, et al. Impact of climate and elevation on snow cover using integrated remote sensing snow products in Tibetan Plateau[J]. Remote Sensing of Environment, 2017, 190: 274-288.
|
[11] |
张永宏, 宋凯达, 王剑庚, 等. 2000—2020年北疆地区积雪时空变化趋势及影响要素[J]. 科技导报, 2023, 41(3): 72-80.
doi: 10.3981/j.issn.1000-7857.2023.03.008
|
|
[Zhang Yonghong, Song Kaida, Wang Jiangeng, et al. The temporal and spatial variation trends and influencing factors of snow cover in northern Xinjiang from 2000 to 2020[J]. Science & Technology Review, 2023, 41(3): 72-80.]
|
[12] |
刘俊峰, 陈仁升. 基于MODIS双卫星积雪遥感数据的积雪日数空间分布研究[J]. 冰川冻土, 2011, 33(3): 504-511.
|
|
[Liu Junfeng, Chen Rensheng, et al. Validation of MODIS snow covered days by the combined using of MODIS aqua and terra snow cover products and in-situ observations all over China[J]. Journal of Glaciology and Cryopedology, 2011, 33(3): 504-511.]
|
[13] |
吕志邦, 王玮, 冯琦胜, 等. 基于MODIS与AMSR-E数据的雪被产品合成及精度评价[J]. 草业科学, 2011, 28(6): 931-938.
|
|
[Lü Zhibang, Wang Wei, Feng Qisheng, et al. Composition and accuracy assessment of snow cover product based on MODIS and AMSR-Edata[J]. Pratacultural Science, 2011, 28(6): 931-938.]
|
[14] |
Wulder M A, Loveland T R, Roy D P, et al. Current status of Landsat program, science, and applications[J]. Remote Sensing of Environment, 2019, 225: 127-147.
doi: 10.1016/j.rse.2019.02.015
|
[15] |
孙燕华, 黄晓东, 王玮, 等. 2003—2010年青藏高原积雪及雪水当量的时空变化[J]. 冰川冻土, 2014, 36(6): 1337-1344.
doi: 10.7522/j.issn.1000-0240.2014.0160
|
|
[Sun Yanhua, Huang Xiaodong, Wang Wei, et al. Spatio-temporal changes of snow cover and snow water equivalent in the Tibetan Plateau during 2003—2010[J]. Journal of Glaciology and Cryopedology, 2014, 36(6): 1337-1344.]
|
[16] |
Yi Y, Liu S Y, Zhu Y, et al. Spatiotemporal heterogeneity of snow cover in the central and western Karakoram Mountains based on a refined MODIS product during 2002—2018[J]. Atmospheric Research, 2021, 250: 105402, doi: 10.1016/j.atmosres.2020.105402.
|
[17] |
She J F, Zhang Y F, Li X G, et al. Changes in snow and glacier cover in an arid watershed of the western Kunlun Mountains using multisource remote-sensing data[J]. International Journal of Remote Sensing, 2014, 35(1): 234-252.
|
[18] |
Ma X F, Yan W, Zhao C Y, et al. Snow-cover area and runoff variation under climate change in the west Kunlun Mountains[J]. Water, 2019, 11(11): 2246, doi: 10.3390/w11112246.
|
[19] |
张镱锂, 李炳元, 郑度. 论青藏高原范围与面积[J]. 地理研究, 2002(1): 1-8.
|
|
[Zhang Yili, Li Bingyuan, Zheng Du, et al. A discussion on the boundary and area of the Tibetan Plateau in China[J]. Geographical Research, 2002(1): 1-8.]
|
[20] |
Hao X H, Huang G H, Zheng Z J, et al. Development and validation of a new MODIS snow-cover-extent product over China[J]. Hydrology and Earth System Sciences, 2022, 26(8): 1937-1952.
|
[21] |
Munoz-sabater J, Dutra E, Agusti-panareda A, et al. ERA5-Land: A state-of-the-art global reanalysis dataset for land applications[J]. Earth System Science Data, 2021, 13(9): 4349-4383.
|
[22] |
邹逸凡, 孙鹏, 张强, 等. 2001—2019年横断山区积雪时空变化及其影响因素分析[J]. 冰川冻土, 2021, 43(6): 1641-1658.
doi: 10.7522/j.issn.1000-0240.2021.0065
|
|
[Zou Yifan, Sun Peng, Zhang Qiang, et al. Analysis on spatial-temporal variation of snow cover and its influencing factors in the Hengduan Mountains from 2001 to 2019[J]. Journal of Glaciology and Cryopedology, 2021, 43(6): 1641-1658.]
|
[23] |
李虹, 李忠勤, 陈普晨, 等. 近20 a新疆阿尔泰山积雪时空变化及其影响因素[J]. 干旱区研究, 2023, 40(7): 1040-1051.
doi: 10.13866/j.azr.2023.07.02
|
|
[Li Hong, Li Zhongqin, Chen Puchen, et al. Spatio-temporal variation of snow cover in Altai Mountains of Xinjiang in recent 20 years and its influencing factors[J]. Arid Zone Research, 2023, 40(7): 1040-1051.]
doi: 10.13866/j.azr.2023.07.02
|
[24] |
刘一静, 孙燕华, 钟歆玥, 等. 从第三极到北极: 积雪变化研究进展[J]. 冰川冻土, 2020, 42(1): 140-156.
doi: 10.7522/j.issn.1000-0240.2020.0007
|
|
[Liu Yijing, Sun Yanhua, Zhong Xinyue, et al. Changes of snow cover in the Third Pole and the Arctic[J]. Journal of Glaciology and Cryopedology, 2020, 42(1): 140-156.]
|
[25] |
唐志光, 王建, 王欣, 等. 基于MODIS数据的青藏高原积雪日数提取与时空变化分析[J]. 山地学报, 2017, 35(3): 412-419.
|
|
[Tang Zhiguang, Wang Jian, Wang Xin, et al. Extraction and spatiotemporal analysis of snow covered days over Tibetan Plateau based on MODIS data[J]. Moutain Research, 2017, 35(3): 412-419.]
|
[26] |
王芝兰, 张飞民, 王澄海, 等. 1980—2019年青藏高原积雪深度时空差异性分析[J]. 冰川冻土, 2022, 44(3): 810-821.
doi: 10.7522/j.issn.1000-0240.2022.0079
|
|
[Wang Zhilan, Zhang Feimin, Wang Chenghai, et al. Analysis on spatial and temporal difference of snow depth over the Tibetan Plateau from 1980 to 2019[J]. Journal of Glaciology and Cryopedology, 2022, 44(3): 810-821.
|
[27] |
Xu W F, Ma L J, Ma M N, et al. Spatial-temporal variability of snow cover and depth in the Qinghai-Tibetan Plateau[J]. Journal of Climate, 2017, 30(4): 1521-1533.
|
[28] |
Chen X, An S, Inouye D W, et al. Temperature and snowfall trigger alpine vegetation green-up on the world’s roof[J]. Global Change Biology, 2015, 21(10): 3635-3646.
|
[29] |
黄晓东, 马英, 李雨馨, 等. 1980—2020年青藏高原积雪时空变化特征[J]. 冰川冻土, 2023, 45(2): 423-434.
doi: 10.7522/j.issn.1000-0240.2023.0032
|
|
[Huang Xiaodong, Ma Ying, Li Yuxin, et al. Spatiotemporal variation characteristics of snow cover over the Tibetan Plateau from 1980 to 2020[J]. Journal of Glaciology and Cryopedology, 2023, 45(2): 423-434.]
|
[30] |
Yang K, Wu H, Qin J, et al. Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: A review[J]. Global and Planetary Change, 2014, 112: 79-91.
|
[31] |
Chen S B, Liu Y F, Thomas A. Climatic change on the Tibetan Plateau: Potential evapotranspiration trends from 1961—2000[J]. Climatic Change, 2006, 76(3-4): 291-319.
|
[32] |
周敏强, 王云龙, 梁慧, 等. 青藏高原Soumi-NPP和MODIS积雪范围产品的对比分析[J]. 冰川冻土, 2019, 41(1): 36-44.
doi: 10.7522/j.issn.1000-0240.2018.0320
|
|
[Zhou Minqiang, Wang Yunlong, Liang Hui, et al. Comparative analysis of the snow coverage products of Soumi-NPP and MODIS in the Qinghai-Tibet Plateau[J]. Journal of Glaciology and Cryopedology, 2019, 41(1): 36-44.
|
[33] |
赵琴, 郝晓华, 和栋材, 等. 1980—2019年北疆积雪时空变化与气候和植被的关系[J]. 遥感技术与应用, 2021, 36(6): 1247-1258.
doi: 10.11873/j.issn.1004-0323.2021.6.1247
|
|
[Zhao Qin, Hao Xiaohua, He Dongcai, et al. The relationship between the temporal and spatial changes of snow cover and climate and vegetation in northern Xinjiang from 1980 to 2019[J]. Remote Sensing Technology and Application, 2021, 36(6): 1247-1258.]
|
[34] |
王国亚, 毛炜峄, 贺斌, 等. 新疆阿勒泰地区积雪变化特征及其对冻土的影响[J]. 冰川冻土, 2012, 34(6): 1293-1300.
|
|
[Wang Guoya, Mao Weiyi, He Bin, et al. Changes in snow covers during 1961—2011 and its effects on frozen ground in Altay Region, Xinjiang[J]. Journal of Glaciology and Cryopedology, 2012, 34(6): 1293-1300.]
|
[35] |
张博, 李雪梅, 秦启勇, 等. 中国天山积雪垂直分布异质性研究[J]. 干旱区地理, 2022, 45(3): 754-762.
doi: 10.12118/j.issn.1000-6060.2021.409
|
|
[Zhang Bo, Li Xuemei, Qin Qiyong, et al. Heterogeneity of the vertical distribution of snow cover in Chinese Tianshan Mountains[J]. Arid Land Geography, 2022, 45(3): 754-762.]
doi: 10.12118/j.issn.1000-6060.2021.409
|
[36] |
除多, 洛桑曲珍, 林志强, 等. 近30年青藏高原雪深时空变化特征分析[J]. 气象, 2018, 44(2): 233-243.
|
|
[Chu Duo, Luosang Quzhen, Lin Zhiqiang, et al. Spatio-temporal variation of snow depth on Tibetan Plateau over the last 30 years[J]. Meteorological Monthly, 2018, 44(2): 233-243.]
|
[37] |
Tan X J, Wu Z N, Mu X M, et al. Spatiotemporal changes in snow cover over China during 1960—2013[J]. Atmospheric Research, 2019, 218: 183-194.
|