[1] |
Ahmed K, Shahid S, Nawaz N. Impacts of climate variability and change on seasonal drought characteristics of Pakistan[J]. Atmospheric Research, 2018, 214: 364-374.
|
[2] |
Damberg L A. Global trends and patterns of drought from space[J]. Theoretical and Applied Climatology, 2013, 117(3-4): 441-448.
|
[3] |
周波涛, 钱进. IPCCAR6报告解读: 极端天气气候事件变化[J]. 气候变化研究进展, 2021, 17(6): 713-718.
|
|
[Zhou Botao, Qian Jin. Changes of weather and climate extremes in the IPCC AR6[J]. Climate Change Research, 2021, 17(6): 713-718. ]
|
[4] |
Dai A. Characteristics and trends in various forms of the Palmer drought severity index during 1900—2008[J]. Journal of Geophysical Research, 2011, 116: D12115, doi: 10.1029/2010JD015541.
|
[5] |
Dai A. Drought under global warming: A review[J]. Wiley Interdisciplinary Reviews: Climate Change, 2011, 2(1): 45-65.
|
[6] |
Oloruntade A J, Mohammad T A, Ghazali A H, et al. Analysis of meteorological and hydrological droughts in the Niger-South Basin, Nigeria[J]. Global and Planetary Change, 2017, 155: 225-233.
|
[7] |
陈亚宁, 李玉朋, 李稚, 等. 全球气候变化对干旱区影响分析[J]. 地球科学进展, 2022, 37(2): 111-119.
doi: 10.11867/j.issn.1001-8166.2022.006
|
|
[Chen Yaning, Li Yupeng, Li Zhi, et al. Analysis of the impact of global climate change on dryland areas[J]. Advances in Earth Science, 2022, 37(2): 111-119. ]
doi: 10.11867/j.issn.1001-8166.2022.006
|
[8] |
Taskiris G. Drought risk assessment and management[J]. Water Resources Management, 2017, 31(10): 3083-3095.
|
[9] |
Van L, Laaha G. Hydrological drought severity explained by climate and catchment characteristics[J]. Journal of Hydrology, 2015, 526: 3-14.
|
[10] |
Williams A P, Seager R, Abatoglou J T, et al. Contribution of anthropogenic warming to California drought during 2012—2014[J]. Geophysical Research Letters, 2015, 42(16): 6819-6828.
|
[11] |
丁一汇. 构建全球气候变化早期预警和防御系统[J]. 可持续发展经济导刊, 2020, 11(增刊1): 44-45.
|
|
[Ding Yihui. Build an early warning and defense system for global climate change[J]. China Sustainability Tribune, 2020, 11(Suppl. 1): 44-45. ]
|
[12] |
袁星, 马凤, 李华, 等. 全球变化背景下多尺度干旱过程及预测研究进展[J]. 大气科学学报, 2020, 43(1): 225-237.
|
|
[Yuan Xing, Ma Feng, Li Hua, et al. A review on multi-scale drought processes and prediction under global change[J]. Transactions of Atmospheric Sciences, 43(1): 225-237. ]
|
[13] |
向燕芸, 王志成, 张辉, 等. 干旱区融雪径流模拟的研究进展与展望[J]. 冰川冻土, 2017, 39(4): 892-901.
doi: 10.7522/j.issn.1000-0240.2017.0099
|
|
[Xiang Yanyun, Wang Zhicheng, Zhang Hui, et al. Study of snowmelt runoff simulation in arid regions: Progress and prospect[J]. Journal of Glaciology and Geocryology, 2017, 39(4): 892-901. ]
doi: 10.7522/j.issn.1000-0240.2017.0099
|
[14] |
Azmat M, Choi M, Kim T W, et al. Hydrological modeling to simulate streamflow under changing climate in a scarcely gauged cryosphere catchment[J]. Environmental Earth Sciences, 2016, 75(3): 186, doi: 10.1007/s12665-015-5059-2.
|
[15] |
Xu H, Liu L, Wang Y, et al. Assessment of climate change impact and difference on the river runoff in four basins in China under 1.5 and 2.0 ℃ global warming[J]. Hydrology and Earth System Sciences, 2019, 23(10): 4219-4231.
|
[16] |
Kong Q, Guerreiro S B, Blenkinsop S, et al. Increases in summertime concurrent drought and heatwave in eastern China[J]. Weather and Climate Extremes, 2020, 28: 100242, doi: 10.1016/j.wace.2019.100242.
|
[17] |
Laurent L, Buoncristiani J F, Pohl B, et al. Landscape pattern change research of Yarkant irrigated area[J]. Scientific Reports, 2020, 10: 10420, doi: 10.1038/s41598-020-67379-7.
pmid: 32591640
|
[18] |
Han H, Wang R. Landscape pattern change research of Yarkant irrigated area[C]// International Symposium on Geomatics for Integrated Water Resources Management. IEEE, 2012.
|
[19] |
王晨鹏, 黄萌田, 翟盘茂. IPCC AR6 报告关于不同类型干旱变化研究的新进展与启示[J]. 气象学报, 2022, 80(1): 168-175.
|
|
[Wang Chenpeng, Huang Mengtian, Zhai Panmao. New progress and enlightenment on different types of drought changes from IPCC Sixth Assessment Report[J]. Acta Meteorologica Sinica, 2022, 80(1): 168-175. ]
|
[20] |
周天军, 邹立维, 陈晓龙. 第六次国际耦合模式比较计划(CMIP6)评述[J]. 气候变化研究进展, 2019, 15(5): 455-456.
|
|
[Zhou Tianjun, Zou Liwei, Chen Xiaolong. Commentary on the Coupled Model Intercomparison Project Phase 6 (CMIP6)[J]. Climate Change Research, 2019, 15(5): 445-456. ]
|
[21] |
Kan B, Su F, Xu B, et al. Generation of high mountain precipitation and temperature data for a quantitative assessment of flow regime in the upper Yarkant Basin in the Karakoram[J]. Journal of Geophysical Research: Atmospheres, 2018, 123(16): 8462-8486.
|
[22] |
刘蛟, 刘铁, 黄粤, 等. 基于遥感数据的叶尔羌河流域水文过程模拟与分析[J]. 地理科学进展, 2017, 36(6): 753-761.
doi: 10.18306/dlkxjz.2017.06.010
|
|
[Liu Jiao, Liu Tie, Huang Yue, et al. Simulation and analysis of the hydrological processes in the Yarkant River Basin based on remote sensing data[J]. Progress in Geography, 2017, 36(6): 753-761. ]
doi: 10.18306/dlkxjz.2017.06.010
|
[23] |
任才, 龙爱华, 於嘉闻, 等. 气候与下垫面变化对叶尔羌河源流径流的影响[J]. 干旱区地理, 2021, 44(5): 1373-1383.
|
|
[Ren Cai, Long Aihua, Yu Jiawen, et al. Effects of climate and underlying surface changes on runoff of Yarkant River source[J]. Arid Land Geography, 2021, 44(5): 1373-1383. ]
|
[24] |
Xiang Y, Wang Y, Chen Y, et al. Impact of climate change on the hydrological regime of the Yarkant River Basin, China: An assessment using three SSP scenarios of CMIP6 GCMs[J]. Remote Sensing, 2021, 14(1): 115, doi: 10.3390/rs14010115.
|
[25] |
田昊玮, 陈伏龙, 龙爱华, 等. 博尔塔拉河源流区径流对气候变化的响应及预测[J]. 干旱区地理, 2023, 46(9): 1432-1442.
|
|
[Tian Haowei, Chen Fulong, Long Aihua, et al. Response and prediction of runoff to climate change in the headwaters of the Bortala River[J]. Arid Land Geography, 2023, 46(9): 1432-1442. ]
|
[26] |
李昱, 席佳, 张弛, 等. 气候变化对澜湄流域气象水文干旱时空特性的影响[J]. 水科学进展, 2021, 32(4): 508-519.
|
|
[Li Yu, Xi Jia, Zhang Chi, et al. Impact of climate change on the spatio-temporal characteristics of meteorological and hydrological drought over the Lancang-Mekong River Basin[J]. Advances in Water Science, 2021, 32(4): 508-519. ]
|
[27] |
Xiang Y, Wang Y, Chen Y, et al. Hydrological drought risk assessment using a multidimensional Copula function approach in arid inland basins, China[J]. Water, 2020, 12(7): 1888, doi: 10.3390/w12071888.
|
[28] |
Sklar A. Fonctions de Repartition a n Dimensions et Leurs Marges[J]. Publications de l’Institut de statistique de l’Université de Paris, 1959(8): 229-231.
|
[29] |
Hao Z, Aghakouchak A, Nakhjiri N, et al. Global integrated drought monitoring and prediction system[J]. Science Data, 2014, 1: 140001, doi: 10.1038/sdata.2014.1.
|
[30] |
Bushra N, Trepanier J C, Rohli R V. Joint probability risk modelling of storm surge and cyclone wind along the coast of bay of Bengal using a statistical Copula[J]. International Journal of Climatology, 2019, 39(11): 4206-4217.
|
[31] |
Das J, Jha S, Goyal M K. Non-stationary and Copula-based approach to assess the drought characteristics encompassing climate indices over the Himalayan states in India[J]. Journal of Hydrology, 2020, 580: 124356, doi: 10.1016/j.jhydrol.2019.124356.
|
[32] |
Lü J Q, Shen B, Li H E. Dynamics of major hydro-climatic variables in the headwater catchment of the Tarim River Basin, Xinjiang, China[J]. Quaternary International, 2015, 380-381: 143-148.
|
[33] |
Gao X, Yang B S, Zhang S Q, et al. Glacier runoff variation and its influence on river runoff during 1961—2006 in the Tarim River Basin, China[J]. Science China Earth Sciences, 2010, 40(5): 544-565.
|
[34] |
Duethmann D T, Bolch D, Farinotti D, et al. Attribution of streamflow trends in snow and glacier melt-dominated catchments of the Tarim River, Central Asia[J]. Water Resources Research, 2015, 51: 4727-4750.
|
[35] |
张久丹, 李均力, 包安明, 等. 2013—2020年塔里木河流域胡杨林生态恢复成效评估[J]. 干旱区地理, 2022, 45(6): 1824-1835.
|
|
[Zhang Jiudan, Li Junli, Bao Anming, et al. Effectiveness assessment of ecological restoration of Populus euphratica forest in the Tarim River Basin during 2013—2020[J]. Arid Land Geography, 2022, 45(6): 1824-1835. ]
|