干旱区地理 ›› 2024, Vol. 47 ›› Issue (6): 1084-1096.doi: 10.12118/j.issn.1000-6060.2023.344
• 区域发展 • 上一篇
收稿日期:
2023-07-05
修回日期:
2023-11-20
出版日期:
2024-06-25
发布日期:
2024-07-09
通讯作者:
霍瑜(1982-),女,教授,博士,主要从事区域经济研究. E-mail: huoyu050301@163.com作者简介:
夏文浩(1998-),男,硕士研究生,主要从事资源与环境经济研究. E-mail: xiawenhao199883@163.com
基金资助:
XIA Wenhao1(), HUO Yu1(), LU Yuan2, WANG Chaoyi1
Received:
2023-07-05
Revised:
2023-11-20
Published:
2024-06-25
Online:
2024-07-09
摘要:
通过测算2007—2020年新疆13个地州市的农业碳排放总量与强度,利用基尼系数分解法揭示新疆农业碳排放强度的区域差异,采用空间杜宾模型考察新疆农业碳排放强度的空间溢出效应与驱动因素。研究表明:(1) 考察期内新疆农业碳排放总量的演变特征大致分为3个阶段:快速上升、持续下降和平稳上升。最大的碳源是秸秆燃烧,其次是禽畜养殖。考察期内农业碳排放强度表现出明显的下降趋势。(2) 考察期初与期末农业碳排放强度表现较大空间差异,呈现出“北低南高”的特征。基于碳排放构成的差异可将新疆划分为5类不同地区。新疆整体、北疆和南疆地区农业碳排放强度的基尼系数均呈现波动下降趋势,区域间差异对总体差异的贡献最大。(3) 考察期内新疆农业碳排放强度呈现显著的空间集聚现象,且各地州市间农业碳排放强度的空间联系程度随时间推移变得更加紧密。新疆农业碳排放主要受市场和政府的双重影响,从市场层面来说,产业聚集、农业产业结构、农业发展水平以及种植结构与农业碳排放强度呈现显著正相关,具有显著的区域间溢出效应。从政府层面分析,环境治理水平和地区灾害发生面积与农业碳排放强度具有显著的负相关关系。
夏文浩, 霍瑜, 逯渊, 王超毅. 新疆农业碳排放的时空差异与空间溢出效应分析[J]. 干旱区地理, 2024, 47(6): 1084-1096.
XIA Wenhao, HUO Yu, LU Yuan, WANG Chaoyi. Spatialtemporal differences and spatial spillover effects of agricultural carbon emissions in Xinjiang[J]. Arid Land Geography, 2024, 47(6): 1084-1096.
表1
变量描述性统计"
变量 | 符号 | 样本量 | 均值 | 标准差 | 最小值 | 最大值 |
---|---|---|---|---|---|---|
农业碳排放强度 | lnEI | 182 | 1.36 | 0.60 | 0.24 | 3.32 |
农业产业集聚 | lnALQ | 182 | 1.12 | 0.59 | 0.04 | 3.11 |
农业产业结构 | lnAIS | 182 | 0.94 | 0.03 | 0.84 | 0.98 |
农业发展水平 | lnAGDP | 182 | 3.41 | 2.81 | 0.40 | 16.32 |
种植结构 | lnPS | 182 | 0.42 | 0.19 | 0.03 | 0.79 |
农村居民人均纯收入 | lnRI | 182 | 0.92 | 0.52 | 0.08 | 2.28 |
水土流失治理面积 | lnSEC | 182 | 64.89 | 61.90 | 1.40 | 301.40 |
灾害发生面积 | lnDA | 182 | 96.43 | 129.70 | 2.18 | 606.90 |
表2
2007—2020年新疆农业碳排放总量与类型"
年份 | 农资利用 | 水稻种植 | 秸秆燃烧 | 禽畜养殖 | 总量 /104 t | 强度 /104 t·元-1 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
排放量/104 t | 比重/% | 排放量/104 t | 比重/% | 排放量/104 t | 比重/% | 排放量/104 t | 比重/% | ||||||
2007 | 391.50 | 18.96 | 27.88 | 1.35 | 952.07 | 46.11 | 693.31 | 33.58 | 2064.76 | 1.92 | |||
2008 | 444.27 | 21.23 | 30.41 | 1.45 | 1067.06 | 50.99 | 550.98 | 26.33 | 2092.72 | 1.75 | |||
2009 | 471.66 | 20.93 | 34.00 | 1.51 | 1191.67 | 52.87 | 556.47 | 24.69 | 2253.80 | 1.71 | |||
2010 | 493.20 | 21.00 | 32.30 | 1.38 | 1272.55 | 54.19 | 550.08 | 23.43 | 2348.13 | 1.25 | |||
2011 | 531.78 | 21.12 | 34.62 | 1.38 | 1399.41 | 55.59 | 551.58 | 21.91 | 2517.40 | 1.27 | |||
2012 | 546.71 | 20.03 | 37.02 | 1.36 | 1540.76 | 56.45 | 604.82 | 22.16 | 2729.31 | 1.18 | |||
2013 | 581.86 | 20.09 | 38.85 | 1.34 | 1657.09 | 57.23 | 617.85 | 21.34 | 2895.65 | 1.13 | |||
2014 | 671.71 | 22.02 | 36.30 | 1.19 | 1700.00 | 55.73 | 642.59 | 21.06 | 3050.59 | 1.10 | |||
2015 | 687.56 | 21.64 | 32.01 | 1.01 | 1803.01 | 56.75 | 654.69 | 20.61 | 3177.27 | 1.12 | |||
2016 | 707.84 | 23.86 | 33.10 | 1.12 | 1578.06 | 53.19 | 648.06 | 21.84 | 2967.07 | 0.99 | |||
2017 | 690.01 | 23.27 | 29.41 | 0.99 | 1593.03 | 53.72 | 652.94 | 22.02 | 2965.39 | 0.96 | |||
2018 | 661.03 | 22.28 | 35.42 | 1.19 | 1656.88 | 55.85 | 613.38 | 20.68 | 2966.71 | 0.81 | |||
2019 | 639.68 | 21.01 | 26.10 | 0.86 | 1673.16 | 54.96 | 705.37 | 23.17 | 3044.30 | 0.78 | |||
2020 | 611.87 | 19.76 | 21.51 | 0.69 | 1730.67 | 55.90 | 731.98 | 23.64 | 3096.03 | 1.10 | |||
累计增速/% | 56.29 | -22.85 | 81.78 | 5.58 | 49.95 | -42.71 | |||||||
平均增速/% | 4.33 | -1.76 | 6.29 | 0.43 | 3.84 | -3.29 |
表3
新疆13个地州市农业碳排放总量与强度"
地州市 | 2007年 | 2020年 | 总量 变动率/% | 强度 变动率/% | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
总量/104 t | 排名 | 强度/104 t·元-1 | 排名 | 总量/104 t | 排名 | 强度/104 t·元-1 | 排名 | ||||
乌鲁木齐市 | 26.57 | 11 | 1.40 | 9 | 27.78 | 12 | 0.66 | 12 | 4.55 | -53.86 | |
昌吉州 | 166.72 | 5 | 1.39 | 10 | 221.68 | 5 | 0.90 | 7 | 32.97 | -35.25 | |
吐鲁番市 | 17.25 | 13 | 0.65 | 13 | 23.04 | 13 | 0.24 | 13 | 33.57 | -63.08 | |
哈密市 | 20.64 | 12 | 1.30 | 11 | 37.17 | 11 | 0.69 | 11 | 80.10 | -46.92 | |
伊犁州直 | 562.40 | 1 | 2.90 | 2 | 455.80 | 1 | 1.39 | 2 | -18.95 | -52.07 | |
塔城地区 | 186.09 | 4 | 2.31 | 5 | 360.48 | 4 | 1.33 | 3 | 93.71 | -42.42 | |
阿勒泰地区 | 88.99 | 8 | 2.85 | 3 | 154.78 | 7 | 1.32 | 4 | 73.93 | -53.68 | |
博州 | 55.79 | 9 | 2.09 | 7 | 108.78 | 9 | 1.16 | 6 | 94.98 | -44.50 | |
巴州 | 117.76 | 7 | 1.29 | 12 | 189.96 | 6 | 0.71 | 10 | 61.31 | -44.96 | |
阿克苏地区 | 233.52 | 3 | 2.21 | 6 | 395.17 | 3 | 0.83 | 8 | 69.22 | -62.44 | |
克州 | 38.38 | 10 | 3.32 | 1 | 55.55 | 10 | 1.26 | 5 | 44.74 | -62.05 | |
喀什地区 | 333.38 | 2 | 1.93 | 8 | 438.87 | 2 | 0.76 | 9 | 31.64 | -60.62 | |
和田地区 | 133.99 | 6 | 2.59 | 4 | 113.35 | 8 | 1.46 | 1 | -15.40 | -43.63 |
表4
新疆13个地州市农业碳排放类型"
类型 | 地州市 | 农资利用 | 水稻种植 | 秸秆燃烧 | 禽畜养殖 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
数量/104 t | 比重/% | 数量/104 t | 比重/% | 数量/104 t | 比重/% | 数量/104 t | 比重/% | |||||
禽畜养殖主导型 | 乌鲁木齐市 | 7.91 | 28.48 | 3.84 | 13.83 | 2.61 | 9.40 | 13.41 | 48.29 | |||
阿勒泰地区 | 28.55 | 18.45 | 0.07 | 0.05 | 50.85 | 32.85 | 75.31 | 48.66 | ||||
克州 | 7.40 | 13.32 | 0.45 | 0.81 | 19.28 | 34.71 | 28.42 | 51.16 | ||||
秸秆燃烧主导型 | 昌吉州 | 60.68 | 27.37 | 0.12 | 0.05 | 117.11 | 52.83 | 43.78 | 19.75 | |||
塔城地区 | 74.29 | 20.61 | 0.06 | 0.02 | 228.74 | 63.45 | 57.39 | 15.92 | ||||
博州 | 25.54 | 23.48 | 0.06 | 0.06 | 63.65 | 58.51 | 19.54 | 17.96 | ||||
巴州 | 56.35 | 29.66 | 0.28 | 0.15 | 86.61 | 45.59 | 46.72 | 24.59 | ||||
阿克苏地区 | 111.03 | 28.10 | 6.62 | 1.68 | 201.93 | 51.10 | 75.60 | 19.13 | ||||
喀什地区 | 126.63 | 28.85 | 1.25 | 0.28 | 237.51 | 54.12 | 73.48 | 16.74 | ||||
秸秆燃烧-禽畜养殖主导型 | 和田地区 | 24.62 | 21.72 | 1.87 | 1.65 | 51.68 | 45.59 | 35.18 | 31.04 | |||
伊犁州直 | 68.85 | 15.11 | 6.89 | 1.51 | 216.62 | 47.53 | 163.44 | 35.86 | ||||
农资利用主导型 | 吐鲁番市 | 10.21 | 44.30 | 0.00 | 0.00 | 4.75 | 20.61 | 8.09 | 35.10 | |||
均衡型 | 哈密市 | 9.81 | 26.39 | 0.00 | 0.00 | 11.55 | 31.07 | 15.81 | 42.53 |
表5
新疆地州市农业碳排放强度Moran’s I检验结果"
年份 | 地理距离空间权重矩阵 | 经济距离空间权重矩阵 | |||||
---|---|---|---|---|---|---|---|
Moran’s I | Z | P值 | Moran’s I | Z | P值 | ||
2007 | 0.105*** | 2.645 | 0.008 | 0.168** | 2.205 | 0.013 | |
2008 | 0.112*** | 2.783 | 0.005 | 0.100*** | 2.418 | 0.008 | |
2009 | 0.102*** | 2.700 | 0.007 | 0.177*** | 2.282 | 0.009 | |
2010 | 0.080** | 2.274 | 0.023 | 0.074*** | 2.339 | 0.007 | |
2011 | 0.077** | 2.200 | 0.028 | 0.039** | 2.058 | 0.021 | |
2012 | 0.092** | 2.427 | 0.015 | 0.073** | 2.267 | 0.012 | |
2013 | 0.057** | 1.996 | 0.046 | 0.091*** | 2.354 | 0.010 | |
2014 | 0.056** | 2.043 | 0.041 | 0.054*** | 2.542 | 0.005 | |
2015 | 0.072** | 2.290 | 0.022 | 0.087*** | 2.643 | 0.003 | |
2016 | 0.064** | 2.240 | 0.025 | 0.093*** | 2.675 | 0.003 | |
2017 | 0.050** | 2.148 | 0.032 | 0.062*** | 2.855 | 0.001 | |
2018 | 0.006 | 1.356 | 0.175 | 0.083*** | 2.253 | 0.008 | |
2019 | -0.012 | 1.083 | 0.279 | 0.003 | 1.458 | 0.135 | |
2020 | 0.015 | 1.547 | 0.122 | 0.011 | 1.265 | 0.176 |
表7
双固定效应空间杜宾模型回归结果(地理距离空间权重矩阵)"
变量 | 模型估计系数 | 空间矩阵估计系数 | 空间自相关估计系数 | 差异系数 | 直接效应 | 间接效应 | 总效应 |
---|---|---|---|---|---|---|---|
lnALQ | 0.163*** (2.74) | 1.005*** (5.26) | 0.220*** (3.58) | 1.531*** (4.42) | 1.751*** (4.85) | ||
lnAIS | 0.159 (0.25) | -4.845*** (-3.13) | -0.101 (-0.17) | -6.720*** (-2.95) | -6.821*** (-3.01) | ||
lnAGDP | -0.014** (-2.07) | 0.022** (1.98) | -0.012* (-1.90) | 0.026 (1.58) | 0.014 (0.81) | ||
lnPS | 0.459** (2.25) | -0.622 (-1.59) | 0.432** (2.27) | -0.671 (-1.25) | -0.238 (-0.44) | ||
lnRI | 0.097 (1.29) | -0.046 (-0.33) | 0.098 (1.40) | 0.010 (0.05) | 0.108 (0.58) | ||
lnSEC | -0.001** (-2.13) | -0.001 (-1.13) | -0.001** (-2.21) | -0.002 (-1.35) | -0.003* (-1.75) | ||
lnDA | 0.001** (2.21) | -0.006*** (-6.48) | 0.000 (1.02) | -0.009*** (-4.31) | -0.008*** (-3.76) | ||
ρ | 0.314** (2.54) | ||||||
sigma2_e | 0.018*** (9.14) | ||||||
R2 | 0.421 | ||||||
Log-L | 100.670 |
表8
双固定效应空间杜宾模型回归结果(经济距离空间权重矩阵)"
变量 | 模型估计系数 | 空间矩阵估计系数 | 空间自相关估计系数 | 差异系数 | 直接效应 | 间接效应 | 总效应 |
---|---|---|---|---|---|---|---|
lnALQ | 0.152** (2.46) | 0.360** (2.28) | 0.189*** (3.11) | 0.617*** (2.86) | 0.806*** (3.65) | ||
lnAIS | -0.274 (-0.43) | -3.276** (-2.50) | -0.576 (-0.98) | -4.922*** (-2.61) | -5.498*** (-2.89) | ||
lnAGDP | -0.016** (-2.31) | 0.008 (0.81) | -0.015** (-2.30) | 0.004 (0.25) | -0.012 (-0.77) | ||
lnPS | 0.413* (1.95) | -1.109*** (-3.13) | 0.325 (1.64) | -1.459*** (-2.93) | -1.134** (-2.16) | ||
lnRI | 0.045 (0.51) | -0.003 (-0.03) | 0.046 (0.57) | 0.041 (0.25) | 0.086 (0.63) | ||
lnSEC | -0.001*** (-3.95) | -0.002** (-2.16) | -0.002*** (-4.41) | -0.004** (-2.44) | -0.005*** (-3.18) | ||
lnDA | 0.001** (2.25) | -0.004*** (-5.79) | 0.000 (1.14) | -0.005*** (-4.21) | -0.005*** (-3.33) | ||
ρ | 0.362*** (3.85) | ||||||
sigma2_e | 0.018*** (9.10) | ||||||
R2 | 0.388 | ||||||
Log-L | 97.821 |
[1] | BP. BP Statistical review of world energy 2022[R/OL]. [2022-11-20]. https://www.bp.com/content/dam/bp/business-sites/en/glo-bal/corporate-/pdfs/energy-economics/statistical-review/bp-stats-review-2021-full-report.pdf. |
[2] | 田云, 尹忞昊. 中国农业碳排放再测算: 基本现状、动态演进及空间溢出效应[J]. 中国农村经济, 2022(3): 104-127. |
[Tian Yun, Yin Minhao. Re-evaluation of China’s agricultural carbon emissions: Basic status, dynamic evolution and spatial spillover effects[J]. Chinese Rural Economy, 2022(3): 104-127.] | |
[3] | 田云, 尹忞昊. 产业集聚对中国农业净碳效应的影响研究[J]. 华中农业大学学报(社会科学版), 2021(3): 107-117, 188. |
[Tian Yun, Yin Minhao. Research on the impact of industrial agglomeration on China’s agricultural net carbon effect[J]. Journal of Huazhong Agricultural University (Social Sciences Edition), 2021(3): 107-117, 188.] | |
[4] | 夏文浩, 潘生亮, 霍瑜, 等. 新疆农业面源污染的时空分异及动态演进——基于特色畜牧视角的再分析[J]. 资源开发与市场, 2022, 38(10): 1190-1199. |
[Xia Wenhao, Pan Shengliang, Huo Yu, et al. Spatial-temporal differentiation and dynamic evolution of agricultural non-point source pollution in Xinjiang: Reanalysis based on the perspective of characteristic animal husbandry[J]. Resource Development & Market, 2022, 38(10): 1190-1199.] | |
[5] | 夏文浩, 王铭扬, 姜磊. 新疆农业碳排放强度时空变化趋势与收敛分析[J]. 干旱区地理, 2023, 46(7): 1145-1154. |
[Xia Wenhao, Wang Mingyang, Jiang Lei. Spatiotemporal variation trends and convergence analysis of agricultural carbon emission intensity in Xinjiang[J]. Arid Land Geography, 2023, 46(7): 1145-1154.] | |
[6] | 李波, 张俊飚, 李海鹏. 中国农业碳排放时空特征及影响因素分解[J]. 中国人口·资源与环境, 2011, 21(8): 80-86. |
[Li Bo, Zhang Junbiao, Li Haipeng. Research on spatial-temporal characteristics and affecting factors decomposition of agricultural carbon emission in China[J]. China Population, Resources and Environment, 2011, 21(8): 80-86.] | |
[7] | 苏洋, 马惠兰, 李凤. 新疆农牧业碳排放及其与农业经济增长的脱钩关系研究[J]. 干旱区地理, 2014, 37(5): 1047-1054. |
[Su Yang, Ma Huilan, Li Feng. Xinjiang agriculture and animal husbandry carbon emissions and its decoupling relationship with agricultural economic growth[J]. Arid Land Geography, 2014, 37(5): 1047-1054.] | |
[8] |
李寒冰, 金晓斌, 杨绪红, 等. 不同农田管理措施对土壤碳排放强度影响的Meta分析[J]. 资源科学, 2019, 41(9): 1630-1640.
doi: 10.18402/resci.2019.09.05 |
[Li Hanbing, Jin Xiaobin, Yang Xuhong, et al. Meta-analysis of the effects of different farmland management measures on soil carbon intensity[J]. Resources Science, 2019, 41(9): 1630-1640.]
doi: 10.18402/resci.2019.09.05 |
|
[9] |
易丹, 欧名豪, 郭杰, 等. 土地利用碳排放及低碳优化研究进展与趋势展望[J]. 资源科学, 2022, 44(8): 1545-1559.
doi: 10.18402/resci.2022.08.02 |
[Yi Dan, Ou Minghao, Guo Jie, et al. Progress and prospect of research on land use carbon emissions and low-carbon optimization[J]. Resources Science, 2022, 44(8): 1545-1559.]
doi: 10.18402/resci.2022.08.02 |
|
[10] | Xia W H, Ma Y G, Gao Y J, et al. Spatial-temporal pattern and spatial convergence of carbon emission intensity of rural energy consumption in China[J]. Environmental Science and Pollution Research, 2024, 31(5): 7751-7774. |
[11] |
田成诗, 陈雨. 中国省际农业碳排放测算及低碳化水平评价——基于衍生指标与TOPSIS法的运用[J]. 自然资源学报, 2021, 36(2): 395-410.
doi: 10.31497/zrzyxb.20210210 |
[Tian Chengshi, Chen Yu. China’s provincial agricultural carbon emissions measurement and low carbonization level evaluation: Based on the application of derivative indicators and TOPSIS[J]. Journal of Natural Resources, 2021, 36(2): 395-410.]
doi: 10.31497/zrzyxb.20210210 |
|
[12] | 胡永浩, 张昆扬, 胡南燕, 等. 中国农业碳排放测算研究综述[J]. 中国生态农业学报(中英文), 2023, 31(2): 163-176. |
[Hu Yonghao, Zhang Kunyang, Hu Nanyan, et al. Review on measurement of agricultural carbon emission in China[J]. Chinese Journal of Eco-Agriculture, 2023, 31(2): 163-176.] | |
[13] | 王宝义. 中国农业碳排放的结构特征及时空差异研究[J]. 调研世界, 2016(9): 3-10. |
[Wang Baoyi. Research on the structural characteristics and spatiotemporal variations of agricultural carbon emissions in China[J]. The World of Survey and Research, 2016(9): 3-10.] | |
[14] | 伍国勇, 刘金丹, 杨丽莎. 中国农业碳排放强度动态演进及碳补偿潜力[J]. 中国人口·资源与环境, 2021, 31(10): 69-78. |
[Wu Guoyong, Liu Jindan, Yang Lisha. Dynamic evolution of China’s agricultural carbon emission intensity and carbon offset potential[J]. China population, Resources and Environment, 2021, 31(10): 69-78.] | |
[15] | 胡剑波, 王青松. 基于泰尔指数的中国农业能源消费碳排放区域差异研究[J]. 贵州社会科学, 2019(7): 108-117. |
[Hu Jianbo, Wang Qingsong. Study on the regional differences of carbon emissions from agricultural energy consumption in China based on Theil index[J]. Guizhou Social Sciences, 2019(7): 108-117.] | |
[16] | 夏四友, 赵媛, 许昕, 等. 近20年来中国农业碳排放强度区域差异、时空格局及动态演化[J]. 长江流域资源与环境, 2020, 29(3): 596-608. |
[Xia Siyou, Zhao Yuan, Xu Xin, et al. Regional inequality, spatial-temporal pattern and dynamic evolution of carbon emission intensity from agriculture in China in the period of 1997—2016[J]. Resources and Environment in the Yangtze Basin, 2020, 29(3): 596-608.] | |
[17] | 庞丽. 我国农业碳排放的区域差异与影响因素分析[J]. 干旱区资源与环境, 2014, 28(12): 1-7. |
[Pang Li. Empirical study of regional carbon emissions of agriculture in China[J]. Journal of Arid Land Resources and Environment, 2014, 28(12): 1-7.] | |
[18] | 颜光耀, 陈卫洪, 钱海慧. 农业技术效率对农业碳排放的影响——基于空间溢出效应与门槛效应分析[J]. 中国生态农业学报, 2023, 31(2): 226-240. |
[Yan Guangyao, Chen Weihong, Qian Haihui. Effects of agricultural technical efficiency on agricultural carbon emission: Based on spatial spillover effect and threshold effect analysis[J]. Chinese Journal of Eco-Agriculture, 2023, 31(2): 226-240.] | |
[19] |
何艳秋, 王鸿春, 刘云强. 产业集聚视角下农业碳排放的空间效应[J]. 资源科学, 2022, 44(12): 2428-2439.
doi: 10.18402/resci.2022.12.04 |
[He Yanqiu, Wang Hongchun, Liu Yunqiang. Spatial effects of agricultural carbon emissions from the perspective of industrial agglomeration[J]. Resources Science, 2022, 44(12): 2428-2439.]
doi: 10.18402/resci.2022.12.04 |
|
[20] |
吉雪强, 李卓群, 张跃松. 农地流转对农业碳排放的影响及空间特性[J]. 资源科学, 2023, 45(1): 77-90.
doi: 10.18402/resci.2023.01.06 |
[Ji Xueqiang, Li Zhuoqun, Zhang Yuesong. Influence of rural land transfer on agricultural carbon emissions and its spatial characteristics[J]. Resources Science, 2023, 45(1): 77-90.]
doi: 10.18402/resci.2023.01.06 |
|
[21] | 郑阳阳, 罗建利. 农业生产效率的碳排放效应: 空间溢出与门槛特征[J]. 北京航空航天大学学报(社会科学版), 2021, 34(1): 96-105. |
[Zheng Yangyang, Luo Jianli. Effect of agricultural production efficiency on carbon emissions: Spatial spillovers and threshold characteristics[J]. Journal of Beijing University of Aeronautics and Astronautics (Social Sciences Edition), 2021, 34(1): 96-105.] | |
[22] | 秦雨新, 李树超. 农业经济增长与农业碳排放强度空间溢出效应实证研究[J]. 湖北农业科学, 2023, 62(4): 232-238. |
[Qin Yuxin, Li Shuchao. An empirical study on the spatial spillover effects of agricultural economic growth and agricultural carbon emission intensity[J]. Hubei Agricultural Sciences, 2023, 62(4): 232-238.] | |
[23] | 段华平, 张悦, 赵建波, 等. 中国农田生态系统的碳足迹分析[J]. 水土保持学报, 2011, 25(5): 203-208. |
[Duan Huaping, Zhang Yue, Zhao Jianbo, et al. Carbon footprint analysis of farmland ecosystem in China[J]. Journal of Soil and Water Conservation, 2011, 25(5): 203-208.] | |
[24] | 刘华军, 鲍振, 杨骞. 中国农业碳排放的地区差距及其分布动态演进——基于Dagum基尼系数分解与非参数估计方法的实证研究[J]. 农业技术经济, 2013(3): 72-81. |
[Liu Huajun, Bao Zhen, Yang Qian. The regional gap of China’s agricultural carbon emissions and its distribution dynamic evolution: An empirical study based on Dagum Gini coefficient decomposition and nonparametric estimation method[J]. Journal of Agrotechnical Economics, 2013(3): 72-81.] | |
[25] | Dagum C. A new approach to the decomposition of the Gini income inequality ratio[J]. Empirical Economics, 1997, 22(4): 515-531. |
[26] |
谢亚燕, 苏洋, 李凤, 等. 技术进步对新疆农业碳排放的门槛效应检验[J]. 浙江农业科学, 2022, 63(1): 158-165, 169.
doi: 10.16178/j.issn.0528-9017.20212365 |
[Xie Yayan, Su Yang, Li Feng, et al. The threshold effect test of technological progress on agricultural carbon emissions in Xinjiang[J]. Journal of Zhejiang Agricultural Sciences, 2022, 63(1): 158-165, 169.] | |
[27] | 高鸣, 魏佳朔. 收入性补贴与粮食全要素生产率增长[J]. 经济研究, 2022, 57(12): 143-161. |
[Gao Ming, Wei Jiashuo. Income subsidy and growth of total factor productivity of grain[J]. Economic Research Journal, 2022, 57(12): 143-161.] | |
[28] | 杜志雄, 胡凌啸. 党的十八大以来中国农业高质量发展的成就与解释[J]. 中国农村经济, 2023(1): 2-17. |
[Du Zhixiong, Hu Lingxiao. The achievements and interpretations of the high-quality agricultural development in China since the 18th National Congress of the Communist Party of China[J]. Chinese Rural Economy, 2023(1): 2-17.] | |
[29] | 李倩娜, 姚娟, 唐洪松, 等. 新疆棉花低碳生产率、区域差异与动态演进[J]. 干旱区资源与环境, 2022, 36(7): 1-8. |
[Li Qianna, Yao Juan, Tang Hongsong, et al. Low carbon productivity, regional differences and dynamic evolution of cotton in Xinjiang[J]. Journal of Arid Land Resources and Environment, 2022, 36(7): 1-8.] | |
[30] | 肖春梅, 朱萍萍. 新疆绿色发展水平综合评价与对策研究[J]. 石河子大学学报(哲学社会科学版), 2018, 32(3): 41-49. |
[Xiao Chunmei, Zhu Pingping. The comprehensive evaluation and countermeasure study of green development level in Xinjiang[J]. Journal of Shihezi University (Philosophy and Social Sciences Edition), 2018, 32(3): 41-49.] | |
[31] | 胡剑波, 王楷文. 中国省域碳排放效率时空差异及空间收敛性研究[J]. 管理学刊, 2022, 35(4): 36-52. |
[Hu Jianbo, Wang Kaiwen. Study on temporal and spatial differences and spatial convergence of provincial carbon emission efficiency in China[J]. Journal of Management, 2022, 35(4): 36-52.] | |
[32] | 郭军, 张效榕, 孔祥智. 农村一二三产业融合与农民增收——基于河南省农村一二三产业融合案例[J]. 农业经济问题, 2019(3): 135-144. |
[Guo Jun, Zhang Xiaorong, Kong Xiangzhi. The convergence of primary, secondary and tertiary industries and farmers’ income generation: One case study of convergence of primary, secondary and tertiary industries in rural areas of Henan Province[J]. Issues in Agricultural Economy, 2019(3): 135-144.] | |
[33] | 王学婷, 张俊飚. 双碳战略目标下农业绿色低碳发展的基本路径与制度构建[J]. 中国生态农业学报, 2022, 30(4): 516-526. |
[Wang Xueting, Zhang Junbiao. Basic path and system construction of agricultural green and low-carbon development with respect to the strategic target of carbon peak and carbon neutrality[J]. Chinese Journal of Eco-Agriculture, 2022, 30(4): 516-526.] | |
[34] | 王恒, 易小燕. 生态振兴视角下绿色施肥行为研究进展[J]. 生态经济, 2019, 35(6): 106-112. |
[Wang Heng, Yi Xiaoyan. Research progress of green fertilization behaviors from the perspective of ecological revitalization[J]. Ecological Economy, 2019, 35(6): 106-112.] | |
[35] |
韩晔, 周忠学. 西安市农业生态系统服务间关系及空间分异[J]. 冰川冻土, 2016, 38(5): 1447-1458.
doi: 10.7522/j.issn.1000-0240.2016.0170 |
[Han Ye, Zhou Zhongxue. Relationship among agro-ecosystem services and their spatial differentiation in the area of Xi’an City[J]. Journal of Glaciology and Geocryology, 2016, 38(5): 1447-1458.] | |
[36] | 徐曼, 余泺, 王富华, 等. 紫色土旱坡地不同坡位土壤有机碳组分含量对施肥管理的响应[J]. 环境科学, 2021, 42(11): 5491-5499. |
[Xu Man, Yu Luo, Wang Fuhua, et al. Response of soil organic carbon content in different slope positions to fertilization management in purple soil sloping fields[J]. Environmental Science, 2021, 42(11): 5491-5499.] | |
[37] | 彭文龙, 吕晓, 辛宗斐, 等. 国际可持续集约化发展经验及其对中国耕地保护的启示[J]. 中国土地科学, 2020, 34(4): 18-25. |
[Peng Wenlong, Lü Xiao, Xin Zongfei, et al. International experience of sustainable intensification and its implications for the protection of cultivated land in China[J]. China Land Science, 2020, 34(4): 18-25.] | |
[38] | 刘浩, 刘璨. 生态系统恢复可持续土地管理措施的成本效益分析——基于中国西部干旱地区数据[J]. 林业经济, 2015, 37(11): 94-105. |
[Liu Hao, Liu Can. Cost-benefit analysis of sustainable land management measures to restore dryland ecosystem: Based on the data from dryland in western China[J]. Forestry Economics, 2015, 37(11): 94-105.] | |
[39] | 冉锦成, 苏洋, 胡金凤, 等. 新疆农业碳排放时空特征、峰值预测及影响因素研究[J]. 中国农业资源与区划, 2017, 38(8): 16-24. |
[Ran Jincheng, Su Yang, Hu Jinfeng, et al. Temporal and spatial characteristics, peak value forecast and influencing factors of agricultural carbon emissions in Xinjiang[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2017, 38(8): 16-24.] | |
[40] | 杨思存, 霍琳, 王成宝, 等. 基于STIRPAT模型的甘肃省农业碳排放特征分析[J]. 干旱区地理, 2023, 46(9): 1493-1502. |
[Yang Sicun, Huo Lin, Wang Chengbao, et al. Characteristics of agricultural carbon emissions in Gansu Province based on STIRPAT model[J]. Arid Land Geography, 2023, 46(9): 1493-1502.] | |
[41] | 许山晶. 我国农村秸秆资源利用的综合效应评价[D]. 北京: 中国社会科学院研究生院, 2020. |
[Xu Shanjing. The effect evaluation of comprehensive utilization of straw resources in China[D]. Beijing: Graduate School of Chinese Academy of Social Sciences, 2020.] | |
[42] | 樊高源, 杨俊孝, 胡娟. 新疆农业生产碳排放变化特征及其净碳排放压力研究[J]. 浙江农业学报, 2016, 28(2): 352-360. |
[Fan Gaoyuan, Yang Junxiao, Hu Juan. Studies of agricultural production carbon emissions’ variation characteristics and net carbon emissions pressure in Xinjiang[J]. Acta Agriculturae Zhejiangensis, 2016, 28(2): 352-360.] |
[1] | 樊静, 申彦波, 常蕊. 气候变化对太阳能资源评估典型气象年选取的影响[J]. 干旱区地理, 2024, 47(6): 922-931. |
[2] | 付玮, 夏文浩, 樊童生, 邹贞, 霍瑜. 塔里木河流域生态系统碳储量的情景预测分析[J]. 干旱区地理, 2024, 47(4): 634-647. |
[3] | 姜萍, 袁野. 新疆植被总初级生产力对大气水分亏缺的响应[J]. 干旱区地理, 2024, 47(3): 403-412. |
[4] | 任贵秀, 刘凯. 黄河流域绿色创新的时空演化特征及影响因素分析[J]. 干旱区地理, 2024, 47(1): 158-169. |
[5] | 白洋,胡静轩,陈春燕,路雯. 旅游援疆效率的区域差异和影响因素——基于三阶段DEA和Tobit模型[J]. 干旱区地理, 2023, 46(8): 1366-1375. |
[6] | 夏文浩, 王铭扬, 姜磊. 新疆农业碳排放强度时空变化趋势与收敛分析[J]. 干旱区地理, 2023, 46(7): 1145-1154. |
[7] | 姚岚博, 冶建明, 王芸, 朱现伟. 干旱区人居环境系统耦合协调的时空演变及作用机制研究——以新疆为例[J]. 干旱区地理, 2023, 46(6): 1013-1023. |
[8] | 杨锐, 李建勇, 王宁练, 陈小俊, 杜建峰, 刘剑波, 韩岳婷. 西天山温泉地区全新世沉积物元素地球化学记录及其古环境意义[J]. 干旱区地理, 2023, 46(6): 900-910. |
[9] | 袁宏伟, 蔡俊, 章磊. 国家重点生态功能区人类活动与生境质量时空变化特征及空间效应[J]. 干旱区地理, 2023, 46(6): 934-948. |
[10] | 张烈琴, 陆亦农, 龙震, 李庆雷, 王涛. 新疆文化旅游空间分布格局[J]. 干旱区地理, 2023, 46(5): 823-833. |
[11] | 闫新杰, 孙慧, 辛龙. 新疆资源型企业的空间分布与区位选择[J]. 干旱区地理, 2023, 46(4): 678-687. |
[12] | 张宁,汪子晨,杨肖,陈彤,邢飞. 新疆水资源与农业种植系统耦合协调及时空差异研究——以粮食和棉花种植系统为例[J]. 干旱区地理, 2023, 46(3): 349-359. |
[13] | 马丽娜, 张飞云, 翟玉鑫, 滕伦, 康建国. 1980—2020年新疆土地利用变化下生态系统服务价值时空演变分析[J]. 干旱区地理, 2023, 46(2): 253-263. |
[14] | 余其鹰, 胡彩虹, 白云岗, 卢震林, 曹彪, 刘富余, 刘成帅. 新疆洪水预报预警中融雪径流模型应用进展[J]. 干旱区地理, 2023, 46(12): 1951-1962. |
[15] | 王志强, 姜文桓, 卢诗月. 基于生态网络分析的新疆“水-能-碳”耦合系统特征研究[J]. 干旱区地理, 2023, 46(12): 2005-2016. |
|