干旱区地理 ›› 2024, Vol. 47 ›› Issue (9): 1472-1481.doi: 10.12118/j.issn.1000-6060.2023.673
王南1,2(), 刘泽轩1,2, 郑江华1,2(), 仲涛3, 孟乘枫1
收稿日期:
2023-11-29
修回日期:
2024-02-26
出版日期:
2024-09-25
发布日期:
2024-09-24
通讯作者:
郑江华(1973-),男,博士,教授,主要从事遥感与地理信息系统应用研究. E-mail: zheng.jianghua@xju.edu.cn作者简介:
王南(2002-),女,硕士研究生,主要从事资源环境遥感研究. E-mail: wsf@stu.xju.edu.cn
基金资助:
WANG Nan1,2(), LIU Zexuan1,2, ZHENG Jianghua1,2(), ZHONG Tao3, MENG Chengfeng1
Received:
2023-11-29
Revised:
2024-02-26
Published:
2024-09-25
Online:
2024-09-24
摘要:
冰湖面积变化是全球气候变化的指示器。天山地形复杂,冰湖分布广泛,其变化特征和对气候变化的响应机制还需要进一步探究。基于Google Earth Engine(GEE)平台研究天山近20 a的冰湖变化情况,同时结合降水和温度进行驱动力分析。结果表明:(1) 2020年天山共有冰湖1532个,冰湖面积164.02 km2;天山冰湖分布呈现西多东少的特点,东、西2个部分冰湖面积年平均增长率分别为3.47%和0.63%。(2) 天山海拔低于3600 m范围内的冰湖普遍呈扩增趋势,面积<0.1 km2的冰湖变化更为明显。(3) 地理探测器结果表明,温度和冰川是影响天山冰湖变化的主要驱动因子。2000—2020年天山东部降水明显增加,温度呈不显著降低趋势,该区域冰湖面积在稳定充足的冰川融水与径流补给下持续扩张。研究结果可以为天山水资源的合理开发以及冰湖溃决灾害风险评估提供科学依据。
王南, 刘泽轩, 郑江华, 仲涛, 孟乘枫. 天山冰湖分布时空特征及驱动力分析[J]. 干旱区地理, 2024, 47(9): 1472-1481.
WANG Nan, LIU Zexuan, ZHENG Jianghua, ZHONG Tao, MENG Chengfeng. Spatiotemporal characteristics and driving forces of glacial lakes in Tianshan Mountains[J]. Arid Land Geography, 2024, 47(9): 1472-1481.
表1
覆盖天山的Landsat影像统计"
传感器 | 获取时间 | 分辨率/m | 传感器 | 获取时间 | 分辨率/m |
---|---|---|---|---|---|
TM | 2000年8—11月 | 30 | TM | 2011年9—10月 | 30 |
TM | 2001年9—10月 | 30 | TM | 2012年8—11月 | 30 |
TM | 2002年9—10月 | 30 | OLI | 2013年9—10月 | 30 |
ETM+ | 2003年9—10月 | 30 | OLI | 2014年9—10月 | 30 |
ETM+ | 2004年9—10月 | 30 | OLI | 2015年9—10月 | 30 |
ETM+ | 2005年8—11月 | 30 | OLI | 2016年9—10月 | 30 |
ETM+ | 2006年9—10月 | 30 | OLI | 2017年9—10月 | 30 |
ETM+ | 2007年9—10月 | 30 | OLI | 2018年9—10月 | 30 |
TM | 2008年9—10月 | 30 | OLI | 2019年9—10月 | 30 |
TM | 2009年9—10月 | 30 | OLI | 2020年9—10月 | 30 |
TM | 2010年9—10月 | 30 |
表6
影响天山冰湖变化的驱动因素交互探测"
因变量 | 驱动因素交互 | 解释度(q值) | 交互作用类型 |
---|---|---|---|
冰湖面积 | 冰川面积∩冰川数量 | 0.6936 | 双因子增强 |
冰川面积∩降水变化率 | 0.9236 | 非线性增强 | |
冰川面积∩温度变化率 | 0.9629 | 非线性增强 | |
冰川面积∩平均海拔高度 | 0.9194 | 非线性增强 | |
冰川数量∩降水变化率 | 0.9053 | 非线性增强 | |
冰川数量∩温度变化率 | 0.5593 | 双因子增强 | |
冰川数量∩平均海拔高度 | 0.5592 | 双因子增强 | |
降水变化率∩温度变化率 | 0.5479 | 双因子增强 | |
降水变化率∩平均海拔高度 | 0.5480 | 双因子增强 | |
温度变化率∩平均海拔高度 | 0.4206 | 双因子增强 | |
冰湖数量 | 冰川面积∩冰川数量 | 0.8893 | 双因子增强 |
冰川面积∩降水变化率 | 0.9201 | 双因子增强 | |
冰川面积∩温度变化率 | 0.9568 | 双因子增强 | |
冰川面积∩平均海拔高度 | 0.9398 | 双因子增强 | |
冰川数量∩降水变化率 | 0.7819 | 双因子增强 | |
冰川数量∩温度变化率 | 0.8674 | 双因子增强 | |
冰川数量∩平均海拔高度 | 0.8673 | 双因子增强 | |
降水变化率∩温度变化率 | 0.9113 | 双因子增强 | |
降水变化率∩平均海拔高度 | 0.9111 | 双因子增强 | |
温度变化率∩平均海拔高度 | 0.8672 | 双因子增强 |
[1] | 王欣, 吴坤鹏, 蒋亮虹, 等. 近20年天山地区冰湖变化特征[J]. 地理学报, 2013, 68(7): 983-993. |
[Wang Xin, Wu Kunpeng, Jiang Lianghong, et al. Wide expansion of glacial lakes in Tianshan Mountains during 1990—2010[J]. Acta Geographica Sinica, 2013, 68(7): 983-993.] | |
[2] | 柴开国. 珠峰地区冰湖变化及其影响研究[D]. 长沙: 湖南科技大学, 2017. |
[Chai Kaiguo. The change of glacial lake and its influence in the Everest region[D]. Changsha: Hunan University of Science and Technology, 2017.] | |
[3] | 易朝路, 崔之久. 新疆阿尔泰山哈纳斯河流域冰川湖泊的分类与沉积类型[J]. 海洋与湖沼, 1994(5): 477-485, 575. |
[Yi Chaolu, Cui Zhijiu. Classification and sedimentary types of glacial lakes in the Halasi River Catchment, the Altay Mountains, Xinjiang[J]. Oceanologia et Limnologia Sinica, 1994(5): 477-485, 575.] | |
[4] |
丁悦凯, 刘睿, 张翠兰, 等. 喜马拉雅地区叶如藏布流域冰川和冰湖变化遥感监测研究[J]. 干旱区地理, 2022, 45(6): 1870-1880.
doi: 10.12118/j.issn.1000-6060.2022.110 |
[Ding Yuekai, Liu Rui, Zhang Cuilan, et al. Remote sensing monitoring of glacier and glacial lake change in Yairu Zangbo Basin, Himalaya[J]. Arid Land Geography, 2022, 45(6): 1870-1880.]
doi: 10.12118/j.issn.1000-6060.2022.110 |
|
[5] | Jain S K, Mir R A. Glacier and glacial lake classification for change detection studies using satellite data: A case study from Baspa Basin, western Himalaya[J]. Geocarto International, 2019, 34(4): 391-414. |
[6] | Wei H, Xiong L Y, Tang G A, et al. Spatial-temporal variation of land use and land cover change in the glacial affected area of the Tianshan Mountains[J]. CATENA, 2021, 202: 105256, doi: 10.1016/ J.CATENA.2021.105256. |
[7] |
Zhang Q F, Chen Y N, Li Z, et al. Why are glacial lakes in the eastern Tianshan Mountains expanding at an accelerated rate?[J]. Journal of Geographical Sciences, 2023, 33(1): 121-150.
doi: 10.1007/s11442-023-2076-z |
[8] | Zhao F, Feng S W, Xie F, et al. Extraction of long time series wetland information based on Google Earth Engine and random forest algorithm for a plateau lake basin: A case study of Dianchi Lake, Yunnan Province, China[J]. Ecological Indicators, 2023, 146: 109813, doi: 10.1016/j.ecolind.2022.109813. |
[9] |
陈秀妍, 付碧宏, 时丕龙, 等. 2000—2016年中亚天山植被变化及气候分异研究[J]. 干旱区地理, 2019, 42(1): 162-171.
doi: 10.12118/j.issn.1000-6060.2019.01.19 |
[Chen Xiuyan, Fu Bihong, Shi Pilong, et al. Vegetation dynamics in response to climate change in Tianshan, Central Asia from 2000 to 2016[J]. Arid Land Geography, 2019, 42(1): 162-171.]
doi: 10.12118/j.issn.1000-6060.2019.01.19 |
|
[10] | Sorg A, Bolch T, Stoffel M, et al. Climate change impacts on glaciers and runoff in Tien Shan (Central Asia)[J]. Nature Climate Change, 2012, 2(10): 725-731. |
[11] | 吴坤鹏. 天山冰湖变化及其影响研究[D]. 长沙: 湖南科技大学, 2014. |
[Wu Kunpeng. The change of glacial lake and its influence in Tianshan Mountains[D]. Changsha: Hunan University of Science and Technology, 2014.] | |
[12] | 刘娟, 姚晓军, 高永鹏, 等. 帕隆藏布流域冰湖变化及危险性评估[J]. 湖泊科学, 2019, 31(4): 1132-1143. |
[Liu Juan, Yao Xiaojun, Gao Yongpeng, et al. Glacial lake variation and hazard assessment of glacial lakes outburst in the Parlung Zangbo River Basin[J]. Journal of Lake Sciences, 2019, 31(4): 1132-1143.] | |
[13] |
姚超, 王欣, 赵轩茹, 等. 1990—2018年中巴经济走廊冰湖时空变化特征[J]. 冰川冻土, 2020, 42(1): 33-42.
doi: 10.7522/j.issn.1000-0240.2020.0009 |
[Yao Chao, Wang Xin, Zhao Xuanru, et al. Spatial-temporal variation of glacial lakes in the China-Pakistan Economic Corridor from 1990 to 2018[J]. Journal of Glaciology and Geocryology, 2020, 42(1): 33-42.]
doi: 10.7522/j.issn.1000-0240.2020.0009 |
|
[14] | 雷鹏嗣, 王伟财, 张太刚. 1990—2020年那曲地区冰湖变化研究[J]. 北京师范大学学报(自然科学版), 2022, 58(6): 936-944. |
[Lei Pengsi, Wang Weicai, Zhang Taigang. Changes in glacial lakes in Naqu from 1990 to 2020[J]. Journal of Beijing Normal University (Natural Science Edition), 2022, 58(6): 936-944.] | |
[15] | 冉伟杰, 王欣, 郭万钦, 等. 2017—2018年中国西部冰川编目数据集[J]. 中国科学数据(中英文网络版), 2021, 6(2): 195-204. |
[Ran Weijie, Wang Xin, Guo Wanqin, et al. 2017—2018 western China glacier catalog data set[J]. China Scientific Data, 2021, 6(2): 195-204.] | |
[16] | Muñoz R, Huggel C, Frey H, et al. Glacial lake depth and volume estimation based on a large bathymetric dataset from the Cordillera Blanca, Peru[J]. Earth Surface Processes and Landforms, 2020, 45(7): 1510-1527. |
[17] |
杨成德, 王欣, 魏俊峰, 等. 基于3S技术方法的中国冰湖编目[J]. 地理学报, 2019, 74(3): 544-556.
doi: 10.11821/dlxb201903011 |
[Yang Chengde, Wang Xin, Wei Junfeng, et al. Chinese glacial lake inventory based on 3S technology method[J]. Acta Geographica Sinica, 2019, 74(3): 544-556.]
doi: 10.11821/dlxb201903011 |
|
[18] | Liu S L, Li W P, Qiao W, et al. Effect of natural conditions and mining activities on vegetation variations in arid and semiarid mining regions[J]. Ecological Indicators, 2019, 103: 331-345. |
[19] | Javed S, Shahzad M I, Abbas S, et al. Long-term variability of atmospheric visual range (1980—2020) over diverse topography of Pakistan[J]. Remote Sensing, 2023, 15(1): 46, doi: 10.3390/rs15010046. |
[20] | 赵轩茹, 舒梅海, 王欣, 等. 基于遥感的1990—2015年阿尔泰山区冰湖变化特征[J]. 湖南科技大学学报(自然科学版), 2019, 34(3): 96-102. |
[Zhao Xuanru, Shu Meihai, Wang Xin, et al. Change characteristics of glacial lake in Altai Mountains during 1990—2015 based on remote sensning data[J]. Journal of Hunan University of Science & Technology (Natural Science Edition), 2019, 34(3): 96-102.] | |
[21] | Maberly S C, O’Donnell R A, Woolway R I, et al. Global lake thermal regions shift under climate change[J]. Nature Communications, 2020, 11(1): 1232, doi: 10.1038/s41467-020-15108-z. |
[22] | 殷永胜, 王欣, 刘时银, 等. 1990—2020年中国冰湖变化特征及影响因素[J]. 湖泊科学, 2023, 35(1): 358-367. |
[Yin Yongsheng, Wang Xin, Liu Shiyin, et al. Characteristics and influence factors of the glacial lake changes in China from 1990 to 2020[J]. Journal of Lake Sciences, 2023, 35(1): 358-367.] | |
[23] |
王劲峰, 徐成东. 地理探测器:原理与展望[J]. 地理学报, 2017, 72(1): 116-134.
doi: 10.11821/dlxb201701010 |
[Wang Jinfeng, Xu Chengdong. Geodetector: Principle and prospective[J]. Acta Geographica Sinica, 2017, 72(1): 116-134.]
doi: 10.11821/dlxb201701010 |
|
[24] | 陈田田, 黄强, 王强. 基于地理探测器的喀斯特山区生态系统服务关系分异特征及驱动力解析——以贵州省为例[J]. 生态学报, 2022, 42(17): 6959-6972. |
[Chen Tiantian, Huang Qiang, Wang Qiang. Differentiation characteristics and driving factors of ecosystem services relationships in karst mountainous area based on geographic detector modeling: A case study of Guizhou Province[J]. Acta Ecologica Sinica, 2022, 42(17): 6959-6972.] | |
[25] |
陶静, 赵文吉, 王旭, 等. 念青唐古拉山西段冰湖时空变化分析[J]. 干旱区研究, 2021, 38(3): 618-628.
doi: 10.13866/j.azr.2021.03.04 |
[Tao Jing, Zhao Wenji, Wang Xu, et al. Spatial changes of the glacial lakes in the western Nyainqentanglha Range[J]. Arid Zone Research, 2021, 38(3): 618-628.]
doi: 10.13866/j.azr.2021.03.04 |
|
[26] | 丁永建, 刘时银, 叶柏生, 等. 近50 a中国寒区与旱区湖泊变化的气候因素分析[J]. 冰川冻土, 2006(5): 623-632. |
[Ding Yongjian, Liu Shiyin, Ye Baisheng, et al. Climatic implications on variations of lakes in the cold and arid regions of China during the recent 50 years[J]. Journal of Glaciology and Geocryology, 2006(5): 623-632.] | |
[27] |
何毅, 杨太保, 陈杰, 等. 1972—2013年东天山博格达峰地区冰川变化遥感监测[J]. 地理科学, 2015, 35(7): 925-932.
doi: 10.13249/j.cnki.sgs.2015.07.925 |
[He Yi, Yang Taibao, Chen Jie, et al. Remote sensing detection of glacier changes in Dong Tianshan Bogda Region in 1972—2013[J]. Scientia Geographica Sinica, 2015, 35(7): 925-932.]
doi: 10.13249/j.cnki.sgs.2015.07.925 |
|
[28] | Chen F, Zhang M M, Guo H D, et al. Annual 30 m dataset for glacial lakes in High Mountain Asia from 2008 to 2017[J]. Earth System Science Data, 2021, 13(2): 741-766. |
[29] |
邓海军, 陈亚宁. 中亚天山山区冰雪变化及其对区域水资源的影响[J]. 地理学报, 2018, 73(7): 1309-1323.
doi: 10.11821/dlxb201807010 |
[Deng Haijun, Chen Yaning. The glacier and snow variations and their impact on water resources in mountain regions: A case study in Tianshan Mountains of Central Asia[J]. Acta Geographica Sinica, 2018, 73(7): 1309-1323.]
doi: 10.11821/dlxb201807010 |
|
[30] | 崔玉环, 叶柏生, 王杰, 等. 乌鲁木齐河源1号冰川度日因子时空变化特征[J]. 冰川冻土, 2010, 32(2): 265-274. |
[Cui Yuhuan, Ye Baisheng, Wang Jie, et al. Analysis of the spatial-temporal variations of the positive degree-day factors on the glacier No. 1 at the headwaters of the Urumqi River[J]. Journal of Glaciology and Geocryology, 2010, 32(2): 265-274.] | |
[31] | 高鑫, 张世强, 叶柏生, 等. 河西内陆河流域冰川融水近期变化[J]. 水科学进展, 2011, 22(3): 344-350. |
[Gao Xin, Zhang Shiqiang, Ye Baisheng, et al. Recent changes of glacier runoff in the Hexi Inland River Basin[J]. Advances in Water Science, 2011, 22(3): 344-350.] | |
[32] |
陈晨, 郑江华, 刘永强, 等. 近20年中国阿尔泰山区冰川湖泊对区域气候变化响应的时空特征[J]. 地理研究, 2015, 34(2): 270-284.
doi: 10.11821/dlyj201502007 |
[Chen Chen, Zheng Jianghua, Liu Yongqiang, et al. The response of glacial lakes in the Altay Mountains of China to climate change during 1992—2013[J]. Geographical Research, 2015, 34(2): 270-284.] | |
[33] | Song C Q, Huang B, Richards K, et al. Accelerated lake expansion on the Tibetan Plateau in the 2000s: Induced by glacial melting or other processes?[J]. Water Resources Research, 2014, 50(4): 3170-3186. |
[34] |
Fang Y, Cheng W M, Zhang Y C, et al. Changes in inland lakes on the Tibetan Plateau over the past 40 years[J]. Journal of Geographical Sciences, 2016, 26: 415-438.
doi: 10.1007/s11442-016-1277-0 |
[35] |
王康, 张廷军, 牟翠翠, 等. 从第三极到北极:气候与冰冻圈变化及其影响[J]. 冰川冻土, 2020, 42(1): 104-123.
doi: 10.7522/j.issn.1000-0240.2020.0004 |
[Wang Kang, Zhang Tingjun, Mou Cuicui, et al. From the Third Pole to the Arctic: Changes and impacts of the climate and cryosphere[J]. Journal of Glaciology and Geocryology, 2020, 42(1): 104-123.]
doi: 10.7522/j.issn.1000-0240.2020.0004 |
|
[36] | Zheng G X, Bao A M, Li J L, et al. Sustained growth of high mountain lakes in the headwaters of the Syr Darya River, Central Asia[J]. Global and Planetary Change, 2019, 176: 84-99. |
[37] | Medeu A R, Popov N V, Blagovechshenskiy V P, et al. Moraine-dammed glacial lakes and threat of glacial debris flows in south-east Kazakhstan[J]. Earth-Science Reviews, 2022, 229: 103999, doi: 10.1016/j.earscirev.2022.103999. |
[38] |
张太刚, 王伟财, 高坛光, 等. 亚洲高山区冰湖溃决洪水事件回顾[J]. 冰川冻土, 2021, 43(6): 1673-1692.
doi: 10.7522/j.issn.1000-0240.2021.0066 |
[Zhang Taigang, Wang Weicai, Gao Tanguang, et al. Glacial lake outburst floods on the High Mountain Asia: A review[J]. Journal of Glaciology and Geocryology, 2021, 43(6): 1673-1692.]
doi: 10.7522/j.issn.1000-0240.2021.0066 |
[1] | 康立民, 滕心如, 车佳航, 怀保娟. 昆仑山北坡区域积雪时空变化特征[J]. 干旱区地理, 2024, 47(9): 1462-1471. |
[2] | 超宝, 赵媛媛, 武海岩, 李媛, 苏宁. 2000—2020年蒙古高原生态系统服务及其对气候因子的响应[J]. 干旱区地理, 2024, 47(9): 1577-1586. |
[3] | 夏婷婷, 薛璇, 王灏伟, 徐文哲, 盛紫怡, 汪洋. 昆仑山北坡陆地水储量变化及其驱动因素分析[J]. 干旱区地理, 2024, 47(8): 1292-1303. |
[4] | 刘雨, 梅华, 范文波, 任聪哲, 王世威, 李顺顺. 基于SPEI的1992—2022年塔额盆地干旱时空变化特征[J]. 干旱区地理, 2024, 47(8): 1338-1347. |
[5] | 朱成刚, 陈亚宁, 张明军, 车彦军, 孙美平, 赵锐锋, 汪洋, 刘玉婷. 昆仑山北坡水资源科学考察初报[J]. 干旱区地理, 2024, 47(7): 1097-1105. |
[6] | 张晶, 马龙, 刘廷玺, 孙柏林, 乔子戌. 基于贺兰山青海云杉(Picea crassifolia)树轮对过去202 a最低气温的重建[J]. 干旱区地理, 2024, 47(6): 909-921. |
[7] | 樊静, 申彦波, 常蕊. 气候变化对太阳能资源评估典型气象年选取的影响[J]. 干旱区地理, 2024, 47(6): 922-931. |
[8] | 利辉, 刘铁军, 王少慧, 刘东伟. 2001—2021年内蒙古荒漠草原水分利用效率时空变化特征及影响因素研究[J]. 干旱区地理, 2024, 47(6): 993-1003. |
[9] | 向燕芸, 王弋, 陈亚宁, 张齐飞, 张玉杰. 基于CMIP6模式的叶尔羌河流域未来水文干旱风险预估[J]. 干旱区地理, 2024, 47(5): 798-809. |
[10] | 王小丽, 周凌翔, 王秀东, 何颖. 1990—2020年波曲流域冰川冰湖时空变化及其对气候变化的响应[J]. 干旱区地理, 2024, 47(5): 810-819. |
[11] | 黎珩, 朱冰冰, 边熇, 王蓉, 唐馨怡. 1970—2020年黄土高原水蚀风蚀交错区极端降水时空变化研究及驱动因素分析[J]. 干旱区地理, 2024, 47(4): 539-548. |
[12] | 赵明杰, 王宁练, 石晨烈, 侯靖琪. 2000—2020年中亚大型湖泊湖冰物候时空变化[J]. 干旱区地理, 2024, 47(4): 561-575. |
[13] | 王淑芝, 温得平. 青藏高原大通河流域径流变化归因分析[J]. 干旱区地理, 2024, 47(2): 203-213. |
[14] | 常学向, 赵文智, 田全彦. 干旱区气候变化及其对山地森林生态系统稳定性和水文过程影响研究进展[J]. 干旱区地理, 2024, 47(2): 228-236. |
[15] | 隋露, 闫志明, 李开放, 何佩恩, 马英杰, 张汝萃. 人类活动及气候变化影响下伊犁河谷生境质量预测研究[J]. 干旱区地理, 2024, 47(1): 104-116. |
|