[1] |
Long D, Pan Y, Zhou J, et al. Global analysis of spatiotemporal variability in merged total water storage changes using multiple GRACE products and global hydrological models[J]. Remote Sensing of Environment, 2017, 192(4): 198-216.
|
[2] |
张齐飞, 陈亚宁, 孙从建, 等. 塔里木河流域水储量变化及绿洲生态安全评估[J]. 干旱区地理, 2024, 47(1): 1-14.
|
|
[Zhang Qifei, Chen Yaning, Sun Congjian, et al. Changes in terrestrial water storage and evaluation of oasis ecological security in the Tarim River Basin[J]. Arid Land Geography, 2024, 47(1): 1-14.]
|
[3] |
吕叶, 杨涵, 黄粤, 等. 咸海流域陆地水储量时空变化研究[J]. 干旱区地理, 2021, 44(4): 943-952.
|
|
[Lü Ye, Yang Han, Huang Yue, et al. Spatiotemporal variation of terrestrial water storage in Aral Sea Basin[J]. Arid Land Geography, 2021, 44(4): 943-952.]
|
[4] |
Rodell M, Velicogna I, Famiglietti J S. Satellite-based estimates of groundwater depletion in India[J]. Nature, 2009, 460(7258): 999-1002.
|
[5] |
Tangdamrongsub N, Steele-Dunne S C, Gunter B C, et al. Data assimilation of GRACE terrestrial water storage estimates into a regional hydrological model of the Rhine River Basin[J]. Hydrology and Earth System Sciences, 2015, 19(4): 2079-2100.
|
[6] |
胡立堂, 孙康宁, 尹文杰. GRACE卫星在区域地下水管理中的应用潜力综述[J]. 地球科学与环境学报, 2016, 38(2): 258-266.
|
|
[Hu Litang, Sun Kangning, Yin Wenjie. Review on the application of GRACE satellite in regional groundwater management[J]. Journal of Earth Sciences and Environment, 2016, 38(2): 258-266.]
|
[7] |
Zhang J X, Liu K, Wang M. Flood detection using gravity recovery and climate experiment (GRACE) terrestrial water storage and extreme precipitation data[J]. Earth System Science Data, 2023, 15(2): 521-540.
|
[8] |
Li C, Yu Q, Zhang Y, et al. Dominant drivers for terrestrial water storage changes are different in northern and southern China[J]. Journal of Geophysical Research: Atmospheres, 2023, 128(23): e2022JD038074, doi: 10.1029/2022JD038074.
|
[9] |
褚江东, 粟晓玲, 吴海江, 等. 2002—2021年中国陆地水储量及其组分变化分析[J]. 水资源保护, 2023, 39(3): 170-178.
|
|
[Chu Jiangdong, Su Xiaoling, Wu Haijiang, et al. Analysis of terrestrial water storage and its component changes in China from 2002 to 2021[J]. Water Resources Protection, 2023, 39(3): 170-178.]
|
[10] |
邓椿, 蒋晓辉, 孙维峰. 基于GRACE数据的黄河流域地下水储量变化与人口暴露研究[J]. 干旱区地理, 2022, 45(6): 1836-1846.
|
|
[Deng Chun, Jiang Xiaohui, Sun Weifeng. Groundwater storage and population exposure in the Yellow River Basin based on GRACE data[J]. Arid Land Geography, 2022, 45(6): 1836-1846.]
|
[11] |
Wei Z Z, Wan X Y. Spatial and temporal characteristics of NDVI in the Weihe River Basin and its correlation with terrestrial water storage[J]. Remote Sensing, 2022, 14(21): 5532, doi: 10.3390/RS14215532.
|
[12] |
Zhu Y, Liu S Y, Yi Y, et al. Overview of terrestrial water storage changes over the Indus River Basin based on GRACE/GRACE-FO solutions[J]. Science of the Total Environment, 2021, 799: 149366, doi: 10.1016/j.scitotenv.2021.149366.
|
[13] |
王宗侠, 刘苏峡. 1990—2020年天山北坡地下水储量估算及其时空演变规律[J]. 地理学报, 2023, 78(7): 1744-1763.
doi: 10.11821/dlxb202307014
|
|
[Wang Zongxia, Liu Suxia. Estimation and spatiotemporal evolution of groundwater storage on the northern slope of the Tianshan Mountains over the past three decades[J]. Acta Geographica Sinica, 2023, 78(7): 1744-1763.]
doi: 10.11821/dlxb202307014
|
[14] |
瞿伟, 晋泽辉, 张勤, 等. GRACE与GRACE Follow-On重力卫星数据揭示出的黄河流域2002—2020年干旱特征[J]. 测绘学报, 2023, 52(5): 714-724.
doi: 10.11947/j.AGCS.2023.20210458
|
|
[Qu wei, Jin Zehui, Zhang Qin, et al. Drought characteristics of the Yellow River Basin from 2002 to 2020 revealed by GRACE and GRACE Follow-On data[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(5): 714-724.]
doi: 10.11947/j.AGCS.2023.20210458
|
[15] |
石振君, 朱秀芳, 唐谊娟. 基于GRACE卫星数据的中国陆地水储量变化和影响因素分析[J]. 干旱区地理, 2023, 46(9): 1397-1406.
|
|
[Shi Zhenjun, Zhu Xiufang, Tang Yijuan. Changes and influencing factors of terrestrial water storage in China based on GRACE satellite data[J]. Arid Land Geography, 2023, 46(9): 1397-1406.]
|
[16] |
邓海军, 何雯君, 刘群, 等. 青藏高原陆地水储量对植被变化的响应特征分析[J]. 地理科学, 2023, 43(6): 952-960.
doi: 10.13249/j.cnki.sgs.2023.06.002
|
|
[Deng Haijun, He Wenjun, Liu Qun, et al. Response of terrestrial water storage to vegetation change on the Qinghai-Tibet Plateau[J]. Scientia Geographica Sinica, 2023, 43(6): 952-960.]
doi: 10.13249/j.cnki.sgs.2023.06.002
|
[17] |
Xiong J H, Guo S L, Chen D L, et al. Past and future terrestrial water storage changes in the lower Mekong River Basin: The influences of climatic and non-climatic factors[J]. Journal of Hydrology, 2022, 612(PC): 128275, doi: 10.1016/j.jhydrol.2022.128275.
|
[18] |
韩煜娜, 左德鹏, 王国庆, 等. 变化环境下青藏高原陆地水储量演变格局及归因[J]. 水资源保护, 2023, 39(2): 199-207, 214.
|
|
[Han Yu’na, Zuo Depeng, Wang Guoqing, et al. Evolution pattern and attribution analysis of terrestrial water storage in Tibetan Plateau under changing environment[J]. Water Resources Protection, 2023, 39(2): 199-207, 214.]
|
[19] |
熊景华, 郭生练, 王俊, 等. 长江流域陆地水储量变化及归因研究[J/OL]. 武汉大学学报(信息科学版), 1-11[2024-02-12]. https://doi.org/10.13203/j.whugis20230017.
|
|
[Xiong Jinghua, Guo Shenglian, Wang Jun, et al. Variation and attribution of terrestrial water storage in the Yangtze River Basin[J/OL]. Geomatics and Information Science of Wuhan University, 1-11[2024-02-12]. https://doi.org/10.13203/j.whugis20230017.]
|
[20] |
Zheng S, Zhang Z Z, Song Z, et al. Anthropogenic and climate-driven water storage variations on the Mongolian Plateau[J]. Remote Sensing, 2023, 15(17): 4184, doi:10.3390/RS15174184.
|
[21] |
Li F, Kusche J, Rietbroek R, et al. Comparison of data-driven techniques to reconstruct (1992—2002) and predict (2017—2018) GRACE-like gridded total water storage changes using climate inputs[J]. Water Resources Research, 2020, 56(5): e2019WR026551, doi: 10.1029/2019WR026551.
|
[22] |
王劲峰, 徐成东. 地理探测器: 原理与展望[J]. 地理学报, 2017, 72(1): 116-134.
doi: 10.11821/dlxb201701010
|
|
[Wang Jinfeng, Xu Chengdong. Geodetector: Principle and prospective[J]. Acta Geographica Sinica, 2017, 72(1): 116-134.]
doi: 10.11821/dlxb201701010
|
[23] |
Yang L J, Yang X R, Wei W, et al. Spatio-temporal evolution and influencing factors of water resource carrying capacity in Shiyang River Basin: Based on the geographical detector method[J]. Water Supply, 2020, 20(4): 1409-1424.
|
[24] |
Ju H, Zhang Z, Zuo L, et al. Driving forces and their interactions of built-up land expansion based on the geographical detector: A case study of Beijing, China[J]. International Journal of Geographical Information Science, 2016, 30(11): 2188-2207.
|
[25] |
Bonekamp P N J, Kok R J, Collier E, et al. Contrasting meteorological drivers of the glacier mass balance between the Karakoram and central Himalaya[J]. Frontiers in Earth Science, 2019, 7: 107, doi: 10.3389/feart.2019.00107.
|
[26] |
De Kok R J, Kraaijenbrink P D A, Tuinenburg O A, et al. Towards understanding the pattern ofglacier mass balances in high mountain Asia using regional climatic modelling[J]. The Cryosphere, 2020, 14(9): 3215-3234.
|
[27] |
Smith T, Bookhagen B. Changes in seasonal snow water equivalent distribution in high mountain Asia (1987 to 2009)[J]. Science Advances, 2018, 4(1): e1701550, doi: 10.1126/sciadv.1701550.
|
[28] |
Liu K, Wang S D, Zhou G S, et al. Past and future adverse response of terrestrial water storages to increased vegetation growth in drylands[J]. npj Climate and Atmospheric Science, 2023, 6(1): 113, doi: 10.1038/S41612-023-00437-9.
|
[29] |
窦甜甜, 程惠红, 周元泽, 等. 华北平原地下水开采对区域地震活动性的影响[J]. 地球物理学报, 2022, 65(8): 2931-2944.
|
|
[Dou Tiantian, Cheng Huihong, Zhou Yuanze, et al. The influence of groundwater mining on regional seismicity in the North China Plain[J]. Chinese Journal of Geophysics, 2022, 65(8): 2931-2944.]
|
[30] |
张林, 沈云中, 陈秋杰, 等. 红柳江区域陆地水储量变化及其驱动因素分析[J]. 测绘学报, 2022, 51(4): 622-630.
doi: 10.11947/j.AGCS.2022.20220030
|
|
[Zhang Lin, Shen Yunzhong, Chen Qiujie, et al. Analysis of terrestrial water storage change and its driving factors of Hongliu River region[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(4): 622-630.]
doi: 10.11947/j.AGCS.2022.20220030
|
[31] |
周志博, 刘杰, 杨超, 等. GRACE重力卫星探究我国华北地区陆地水储量变化[J]. 南水北调与水利科技(中英文), 2020, 18(5): 66-73.
|
|
[Zhou Zhibo, Liu Jie, Yang Chao, et al. The variation of terrestrial water storage in north China based on GRACE gravity satellite[J]. South-to-North Water Transfers and Water Science & Technology, 2020, 18(5): 66-73.]
|
[32] |
Wang Y, Xia T T, Shataer R, et al. Analysis of characteristics and driving factors of land-use changes in the Tarim River Basin from 1990 to 2018[J]. Sustainability, 2021(18): 10263, doi: 10.3390/su131810263.
|