[1] |
陈亚宁, 李忠勤, 徐建华, 等. 中国西北干旱区水资源与生态环境变化及保护建议[J]. 中国科学院院刊, 2023, 38(3): 385-393.
|
|
[Chen Yaning, Li Zhongqin, Xu Jianhua, et al. Changes and protection suggestions in water resources and ecological environment in arid region of northwest China[J]. Bulletin of Chinese Academy of Sciences, 2023, 38(3): 385-393.]
|
[2] |
李秀成, 杨太保, 田洪阵. 1990—2011年西昆仑峰区冰川变化的遥感监测[J]. 地理科学进展, 2013, 32(4): 548-559.
|
|
[Li Xioucheng, Yang Taibao, Tian Hongzhen. Variation of west Kunlun Mountains glacier during 1990—2011[J]. Progress in Geography, 2013, 32(4): 548-559.]
|
[3] |
赵华秋, 王欣, 赵轩茹, 等. 2008—2018年中国冰川变化分析[J]. 冰川冻土, 2021, 43(4): 976-986.
doi: 10.7522/j.issn.1000-0240.2021.0055
|
|
[Zhao Huaqiu, Wang Xin, Zhao Xuanru, et al. Analysis of glacier changes in China from 2008 to 2018[J]. Journal of Glaciology and Geocryology, 2021, 43(4): 976-986.]
doi: 10.7522/j.issn.1000-0240.2021.0055
|
[4] |
陈亚宁. 东昆仑-库木库里盆地西南边缘岩溶地貌[J]. 干旱区地理, 1985, 8(3): 44-47.
|
|
[Chen Yaning. The karst landforms in the Kumkul Basin’s edge of the east Kunlun Mountains[J]. Arid Land Geography, 1985, 8(3): 44-47.]
|
[5] |
Zhou J, Wang L, Zhang Y S, et al. Exploring the water storage changes in the largest lake (Selin Co) over the Tibetan Plateau during 2003—2012 from a basin-wide hydrological modeling[J]. Water Resources Research, 2015, 51: 8060-8086.
|
[6] |
Zhou J, Wang L, Zhang Y Y, et al. Quantifying the major drivers for the expanding lakes in the interior Tibetan Plateau[J]. Science Bulletin, 2022, 67: 474-478.
doi: 10.1016/j.scib.2021.11.010
pmid: 36546167
|
[7] |
张俊兰, 杨霞, 肖俊安, 等. 昆仑山北部夏季降水多尺度时空变化特征[J]. 高原山地气象研究, 2023, 43(3): 1-10.
|
|
[Zhang Junlan, Yang Xia, Xiao Jun’an, et al. Multi-scale temporal and spatial variation characteristics of summer precipitation in northern Kunlun Mountains[J]. Plateau and Mountain Meteorology Research, 2023, 43(3): 1-10.]
|
[8] |
Ombadi M, Risser M D, Rhoades A M, et al. A warming-induced reduction in snow fraction amplifies rainfall extremes[J]. Nature, 2023, 619: 305-310.
|
[9] |
Donat M G, Lowry A L, Alexander L V, et al. More extreme precipitation in the world’s dry and wet regions[J]. Nature Climate Change, 2016, 6: 508-513.
|
[10] |
Shen Z X, Zhang Q, Singh V P, et al. Drying in the low-latitude Atlantic Ocean contributed to terrestrial water storage depletion across Eurasia[J]. Nature Communications, 2022, 13: 1849, doi: 10.1038/s41467-022-29544-6
pmid: 35387999
|
[11] |
Li X Y, Long D, Scanlon B R, et al. Climate change threatens terrestrial water storage over the Tibetan Plateau[J]. Nature Climate Change, 2022, 12: 801-807.
|
[12] |
王宗侠, 刘苏峡. 1990—2020年天山北坡地下水储量估算及其时空演变规律[J]. 地理学报, 2023, 78(7): 1744-1763.
doi: 10.11821/dlxb202307014
|
|
[Wang Zongxia, Liu Suxia. Estimation and spatiotemporal evolution of groundwater storage on the northern slope of the Tianshan Mountains over the past three decades[J]. Acta Geographica Sinica, 2023, 78(7): 1744-1763.]
doi: 10.11821/dlxb202307014
|
[13] |
张齐飞, 陈亚宁, 孙从建, 等. 塔里木河流域水储量变化及绿洲生态安全评估[J]. 干旱区地理, 2024, 47(1): 1-13.
|
|
[Zhang Qifei, Chen Yaning, Sun Congjian, et al. Changes in terrestrial water storage and evaluation of oasis ecological security in the Tarim River Basin[J]. Arid Land Geography, 2024, 47(1): 1-13.]
|
[14] |
姚俊强, 毛炜峄, 陈静, 等. 新疆气候“湿干转折”的信号和影响探讨[J]. 地理学报, 2021, 76(1): 57-72.
doi: 10.11821/dlxb202101005
|
|
[Yao Junqiang, Mao Weiyi, Chen Jing, et al. Signal and impact of wet-to-dry shift over Xinjiang, China[J]. Acta Geographica Sinica, 2021, 76(1): 57-72.]
doi: 10.11821/dlxb202101005
|
[15] |
董翰林, 王文婷, 谢云, 等. 新疆气候干湿变化特征及其影响因素[J]. 干旱区研究, 2023, 40(12): 1875-1884.
|
|
[Dong Hanlin, Wang Wenting, Xie Yun, et al. Climate dry-wet conditions, changes, and their driving factors in Xinjiang[J]. Arid Zone Research, 2023, 40(12): 1875-1884.]
|
[16] |
田昊玮, 陈伏龙, 龙爱华, 等. 博尔塔拉河源流区径流对气候变化的响应及预测[J]. 干旱区地理, 2023, 46(9): 1432-1442.
|
|
[Tian Haowei, Chen Fulong, Long Aihua, et al. Response and prediction of runoff to climate change in the headwaters of the Bortala River[J]. Arid Land Geography, 2023, 46(9): 1432-1442.]
|