干旱区地理 ›› 2024, Vol. 47 ›› Issue (4): 561-575.doi: 10.12118/j.issn.1000-6060.2023.200
赵明杰1,2(), 王宁练1,2,3(), 石晨烈1,2, 侯靖琪1,2
收稿日期:
2023-05-05
修回日期:
2023-06-16
出版日期:
2024-04-25
发布日期:
2024-05-17
通讯作者:
王宁练(1966-),男,博士,教授,主要从事冰冻圈和全球变化研究. E-mail: nlwang@nwu.edu.cn作者简介:
赵明杰(1999-),男,硕士研究生,主要从事湖冰物候研究. E-mail: 17600776722@163.com
基金资助:
ZHAO Mingjie1,2(), WANG Ninglian1,2,3(), SHI Chenlie1,2, HOU Jingqi1,2
Received:
2023-05-05
Revised:
2023-06-16
Published:
2024-04-25
Online:
2024-05-17
摘要:
湖冰物候变化特征是区域气候变化的敏感指示器之一。近几十年来,由于全球变暖和人为活动的影响,中亚地区的气候发生了显著变化,准确监测湖冰物候对于了解中亚地区气候变化具有重要的科学意义。通过对中亚地区7个大型湖泊(卡拉库尔湖、巴尔喀什湖、咸海、阿拉湖、斋桑泊、查蒂尔-科尔湖以及马卡科尔湖,面积>100 km2) 2000—2020年的长期地表反射率数据、气象数据以及湖泊资料的综合分析,利用GIS相关技术探讨其湖冰物候特征及其影响因素。结果表明:(1) 中亚地区的湖泊在9月中旬至11月上旬期间开始结冰,11月底到12月底会完全封冻,湖泊平均冻结时间为35 d;湖冰在3月底至5月中开始消融,4月上至6月上会完全消融,湖泊平均消融时间为18 d。(2) 2000—2020年中亚7个湖泊中有5个湖泊开始冻结日期呈现延后的趋势,平均延后速率为4.86 d·(10a)-1,巴尔喀什湖开始冻结日期呈现提前趋势,提前率为1.44 d·(10a)-1。完全消融日期呈现提前的趋势,平均提前率为2.90 d·(10a)-1。7个湖泊的平均湖冰存在期为171 d,其中有4个湖泊湖冰存在期呈缩短趋势,完全冻结期呈现整体缩短趋势,其中巴尔喀什湖缩短最明显,缩短速率为9.02 d·(10 a)-1。(3) 中亚7个湖泊湖冰的冻结-消融空间模式主要分为两类:湖水从两岸向湖心逐渐冻结,消融时从湖岸到对岸;湖水自湖岸冻结至对岸,越先冻结的湖区越先消融。(4) 中亚地区湖泊湖冰物候变化受到湖泊本身(海拔和面积)和气候(气温和降水量)等多个因素的影响,气温是影响湖冰物候的关键因素,气温越高,湖冰存在期越短;面积主要影响湖泊的冻结日期,面积越大,湖泊的湖冰存在期越短;湖冰物候也表现出一定的海拔依赖性,随着海拔的升高,湖泊的湖冰存在期越长。
赵明杰, 王宁练, 石晨烈, 侯靖琪. 2000—2020年中亚大型湖泊湖冰物候时空变化[J]. 干旱区地理, 2024, 47(4): 561-575.
ZHAO Mingjie, WANG Ninglian, SHI Chenlie, HOU Jingqi. Temporal and spatial variations of lake ice phenology in large lakes of Central Asia from 2000 to 2020[J]. Arid Land Geography, 2024, 47(4): 561-575.
表1
研究中使用的湖泊信息"
湖泊名称 | 地理位置 | 面积/km2 | 年份 | 海拔/m | 湖泊类型 |
---|---|---|---|---|---|
卡拉库尔湖 | 39°02′24″N,73°25′12″E | 380 | 2015 | 3914 | 咸水湖 |
巴尔喀什湖 | 46°10′27″N,74°20′25″E | 16996 | 2021 | 342 | 东为咸西为淡 |
查蒂尔-科尔湖 | 40°37′25″N,75°18′20″E | 181 | 2020 | 3530 | 咸水湖 |
马卡科尔湖 | 48°45′23″N,85°45′29″E | 455 | 2019 | 1445 | 咸水湖 |
阿拉湖 | 46°10′17″N,81°35′15″E | 2650 | 2016 | 347 | 咸水湖 |
斋桑泊 | 48°00′07″N,84°00′05″E | 1810 | 2021 | 388 | 淡水湖 |
咸海 | 45°53′25″N,60°23′21″E | 3300 | 2008 | 39 | 咸水湖 |
表2
研究中使用的Landsat数据"
陆地卫星 | 影像日期(年-月-日) | 湖泊名称 | 陆地卫星 | 影像日期(年-月-日) | 湖泊名称 |
---|---|---|---|---|---|
Landsat7 | 2016-11-17 | 卡拉库尔湖 | Landsat8 | 2018-12-09 | 马卡科尔湖 |
Landsat7 | 2016-12-03 | 巴尔喀什湖 | Landsat8 | 2018-12-25 | 查蒂尔-科尔湖 |
Landsat7 | 2017-01-10 | 查蒂尔-科尔湖 | Landsat8 | 2019-05-02 | 咸海 |
Landsat7 | 2017-05-12 | 马卡科尔湖 | Landsat8 | 2019-05-18 | 斋桑泊 |
Landsat7 | 2017-05-28 | 斋桑泊 | Landsat8 | 2019-11-26 | 巴尔喀什湖 |
Landsat7 | 2017-11-20 | 咸海 | Landsat8 | 2019-12-12 | 阿拉湖 |
Landsat7 | 2017-12-06 | 阿拉湖 | Landsat8 | 2019-12-28 | 卡拉库尔湖 |
Landsat7 | 2017-12-22 | 卡拉库尔湖 | Landsat8 | 2020-01-29 | 斋桑泊 |
Landsat8 | 2018-01-07 | 巴尔喀什湖 | Landsat8 | 2020-05-04 | 咸海 |
Landsat8 | 2018-05-15 | 阿拉湖 | Landsat8 | 2020-05-20 | 卡拉库尔湖 |
表3
2000—2020年中亚地区所选湖泊平均湖冰物候统计"
湖泊名称 | 开始冻结 | 完全冻结 | 开始消融 | 完全消融 | 冻结期 | 消融期 | 湖冰存在期 | 完全冻结期 |
---|---|---|---|---|---|---|---|---|
巴尔喀什湖 | 333 | 360 | 453 | 471 | 29 | 19 | 140 | 94 |
查蒂尔-科尔湖 | 283 | 330 | 499 | 518 | 49 | 20 | 237 | 170 |
马卡科尔湖 | 324 | 336 | 498 | 505 | 13 | 8 | 182 | 163 |
阿拉湖 | 261 | 334 | 450 | 482 | 75 | 33 | 223 | 117 |
卡拉库尔湖 | 315 | 359 | 493 | 516 | 45 | 23 | 202 | 136 |
咸海 | 336 | - | 365 | 463 | - | - | 127 | - |
斋桑泊 | 326 | 335 | 471 | 479 | 10 | 8 | 153 | 137 |
平均值 | 311 | 342 | 477 | 491 | 35 | 18 | 171 | 126 |
表4
2000—2020中亚地区所选湖泊湖冰物候变化趋势"
湖泊名称 | 开始冻结 | 完全冻结 | 开始消融 | 完全消融 | 冻结期 | 消融期 | 完全冻结期 | 湖冰存在期 |
---|---|---|---|---|---|---|---|---|
巴尔喀什湖 | -1.44 | 7.01** | -2.01 | -0.58 | 8.33** | 1.44 | -9.02 | 0.87* |
查蒂尔-科尔湖 | 18.00*** | -0.40 | 2.40 | -1.20 | -19.00*** | -5.00 | 4.10*** | -19.20 |
马卡科尔湖 | 0.70 | 0.40 | -4.90 | -5.20* | -0.40 | -0.30 | -5.30* | -5.90* |
阿拉湖 | 3.00 | 6.00** | -0.90 | -5.70** | 3.00 | -4.70** | -7.00** | -8.70* |
卡拉库尔湖 | -0.30 | 6.80*** | -1.50 | 0.70 | 7.00** | 2.20 | -8.30 | 1.00*** |
咸海 | 1.70 | - | - | -1.50 | - | - | - | -3.20 |
斋桑泊 | 1.00 | 0.90 | -4.40* | -4.00* | -0.10 | -0.40 | -4.60* | -5.00 |
[1] | Wang X, Qin D H, Ren J W, et al. Numerical estimation of thermal insulation performance of different coverage schemes at three places for snow storage[J]. Advances in Climate Change Research, 2021, 12(6): 903-912. |
[2] | IPCC. Climate change 2022: Impacts, adaptation and vulnerability[M]. Cambridge: Cambridge University Press, 2022: 14-26. |
[3] | Alimonti G, Mariani L, Prodi F, et al. A critical assessment of extreme events trends in times of global warming[J]. The European Physical Journal Plus, 2022, 137(1): 1-20. |
[4] | Guo L N, Wu Y H, Zheng H X, et al. Uncertainty and variation of remotely sensed lake ice phenology across the Tibetan Plateau[J]. Remote Sensing, 2018, 10(10): 1534, doi: 10.3390/rs10101534. |
[5] | Du J Y, Kimball J S, Duguay C R, et al. Satellite microwave assessment of northern hemisphere lake ice phenology from 2002 to 2015[J]. The Cryosphere, 2017, 11(1): 47-63. |
[6] |
Hampton S E, Galloway A W, Powers S M, et al. Ecology under lake ice[J]. Ecol Lett, 2017, 20(1): 98-111.
doi: 10.1111/ele.12699 pmid: 27889953 |
[7] | Wang W, Lee X H, Xiao W, et al. Global lake evaporation accelerated by changes in surface energy allocation in a warmer climate[J]. Nature Geoscience, 2018, 11(6): 410-414. |
[8] |
Sharma S, Blagrave K, Magnuson J J, et al. Widespread loss of lake ice around the Northern Hemisphere in a warming world[J]. Nature Climate Change, 2019, 9(3): 227-231.
doi: 10.1038/s41558-018-0393-5 |
[9] | Lu J, Qiu Y, Wang X, et al. Constructing dataset of classified drainage areas based on surface water-supply patterns in high mountain Asia[J]. Big Earth Data, 2020, 4(3): 225-241. |
[10] | Sharma S, Meyer M, Culpepper J, et al. Integrating perspectives to understand lake ice dynamics in a changing world[J]. Journal of Geophysical Research: Biogeosciences, 2020, 125(8): e2020JG005799, doi: 10.1029/2020G005799. |
[11] | Leppäranta M. Freezing of lakes and the evolution of their ice cover[M]. Berlin: Springer Science & Business Media, 2014: 245-269. |
[12] |
Sharma S, Blagrave K, Magnuson J, et al. Widespread loss of lake ice around the Northern Hemisphere in a warming world[J]. Nature Climate Change, 2019, 9(3): 227-231.
doi: 10.1038/s41558-018-0393-5 |
[13] | Woolway R, Kraemer B, Lenters J, et al. Global lake responses to climate change[J]. Nature Reviews Earth & Environment, 2020, 1(8): 388-403. |
[14] | Woolway R I, Merchant C J. Worldwide alteration of lake mixing regimes in response to climate change[J]. Nature: Geoscience, 2019, 12(4): 271-276. |
[15] | Kouraev A V, Semovski S V, Shimaraev M N, et al. Observations of Lake Baikal ice from satellite altimetry and radiometry[J]. Remote Sensing of Environment, 2007, 108(3): 240-253. |
[16] | Marszelewski W, Skowron. Ice cover as an indicator of winter air temperature changes: Case study of the Polish lowland lakes[J]. Hydrological Sciences Journal, 2006, 51(2): 336-349. |
[17] | 魏秋方, 叶庆华. 湖冰遥感监测方法综述[J]. 地理科学进展, 2010, 29(7): 803-810. |
[Wei Qiufang, Ye Qinghua. Review of lake ice monitoring by remote sensing[J]. Progress in Geography, 2010, 29(7): 803-810. ]
doi: 10.11820/dlkxjz.2010.07.005 |
|
[18] | Cai Y, Ke C Q, Duan Z. Monitoring ice variations in Qinghai Lake from 1979 to 2016 using passive microwave remote sensing data[J]. Science of the Total Environment, 2017, 607-608: 120-131. |
[19] | Che T, Li X, Jin R. Monitoring the frozen duration of Qinghai Lake using satellite passive microwave remote sensing low frequency data[J]. Chinese Science Bulletin, 2009, 54(13): 2294-2299. |
[20] | Ke C Q, Tao A Q, Jin X. Variability in the ice phenology of Nam Co Lake in central Tibet from scanning multichannel microwave radiometer and special sensor microwave/image: 1978 to 2013[J]. Journal of Applied Remote Sensing, 2013, 7(1): 073477, doi: 10.1117/1.JRS.7.073477. |
[21] | Howell S E L, Brown L C, Kang K K, et al. Variability in ice phenology on Great Bear Lake and Great Slave Lake, Northwest Territories, Canada, from SeaWinds/QuikSCAT: 2000—2006[J]. Remote Sensing of Environment, 2009, 113(4): 816-834. |
[22] | 柯长青, 蔡宇, 肖瑶. 1979年—2019年兴凯湖湖冰物候变化的被动微波遥感监测[J]. 遥感学报, 2022, 26(1): 201-210. |
[Ke Changqing, Cai Yu, Xiao Yao. Monitoring ice phenology variations in Khanka Lake based on passive remote sensing data from 1979 to 2019[J]. National Remote Sensing Bulletin, 2022, 26(1): 201-210. ] | |
[23] | Duguay C R, Lafleur P M. Estimating depth and ice thickness of shallow subarctic lakes using space borne optical and SAR data[J]. International Journal of Remote Sensing, 2003, 24(3): 475-489. |
[24] | Jeffries M O, Morris K, Weeks W F, et al. Structural and stratigraphic features and ERS 1 synthetic aperture radar back scatter characteristics of ice growing on shallow lakes in NW Alaska, winter 1991—1992[J]. Journal of Geophysical Research: Oceans, 1994, 99(C11): 22459-22471. |
[25] | Duguay C R, Pultz T J, Lafleur P M, et al. RADARSAT back scatter characteristics of ice growing on shallow subarctic lakes, Churchill, Manitoba, Canada[J]. Hydrological Processes, 2002, 16(8): 1631-1644. |
[26] | Geldsetzer T, Sanden J V D, Brisco B. Monitoring lake ice during spring melt using RADARSAT-2 SAR[J]. Canadian Journal of Remote Sensing, 2010, 36(Suppl. 2): S391-S400. |
[27] | Chaouch N, Temimi M, Romanov P, et al. An automated algorithm for river ice monitoring over the Susquehanna River using the MODIS data[J]. Hydrological Processes, 2014, 28(1): 62-73. |
[28] | Latifovic R, Pouliot D. Analysis of climate change impacts on lake ice phenology in Canada using the historical satellite data record[J]. Remote Sensing of Environment, 2007, 106(4): 492-507. |
[29] | 邰雪楠, 王宁练, 吴玉伟, 等. 近20 a色林错湖冰物候变化特征及其影响因素[J]. 湖泊科学, 2022, 34(1): 334-348. |
[Tai Xuenan, Wang Ninglian, Wu Yuwei, et al. Lake ice phenology variations and influencing factors of Selin Co from 2000 to 2020[J]. Journal of Lake Sciences, 2022, 34(1): 334-348. ] | |
[30] |
Yao X J, Li L, Zhao J, et al. Spatial-temporal variations of lake ice phenology in the Hoh Xil region from 2000 to 2011[J]. Journal of Geographical Sciences, 2016, 26: 70-82.
doi: 10.1007/s11442-016-1255-6 |
[31] | 吴艳红, 郭立男, 范兰馨, 等. 青藏高原纳木错湖冰物候变化遥感监测与模拟[J]. 遥感学报, 2022, 26(1): 193-200. |
[Wu Yanhong, Guo Linan, Fan Lanxin, et al. Lake ice phenology of the Nam Co at Tibetan Plateau: Remote sensing and modelling[J]. National Remote Sensing Bulletin, 2022, 26(1): 193-200. ] | |
[32] | 黄鑫, 焦黎, 马晓飞, 等. 基于RClimDex模型的近60 a中亚极端降水事件变化特征[J]. 干旱区地理, 2023, 46(7): 1039-1051. |
[Huang Xin, Jiao Li, Ma Xiaofei, et al. Change characteristics of extreme precipitation events in Central Asia in recent 60 years based on RClimDex model[J]. Arid Land Geography, 2023, 46(7): 1039-1051. ] | |
[33] | Che X, Feng M, Sun Q, et al. The decrease in lake numbers and areas in Central Asia investigated using a Landsat-derived water dataset[J]. Remote Sensing, 2021, 13(5): 1032, doi: 10.3390/rs13051032. |
[34] | Huang W, Duan W, Chen Y. Unravelling lake water storage change in Central Asia: Rapid decrease in tail-end lakes and increasing risks to water supply[J]. Journal of Hydrology, 2022, 614: 128546, doi: 10.1016/j.jhydrol.2022.128546. |
[35] | Hu Z, Zhang Z, Sang Y F, et al. Temporal and spatial variations in the terrestrial water storage across Central Asia based on multiple satellite datasets and global hydrological models[J]. Journal of Hydrology, 2021, 596: 126013, doi: 10.1016/j.jhydrol.2021.126013. |
[36] | 夏怀霞, 梁涵玮, 陈爽, 等. 中亚地区土地与人口城镇化时空耦合特征[J]. 干旱区地理, 2023, 46(1): 115-126. |
[Xia Huaixia, Liang Hanwei, Chen Shuang, et al. Spatiotemporal coupling of landscape-demographic urbanization in Central Asia[J]. Arid Land Geography, 2023, 46(1): 115-126. ] | |
[37] | 陈佳毅, 赵勇. 伊朗高原和北非感热异常对夏季塔里木盆地降水的影响[J]. 干旱区地理, 2022, 45(5): 1357-1369. |
[Chen Jiayi, Zhao Yong. Effects of sensible heat anomalies in the Iranian Plateau and North Africa on summer precipitation in the Tarim Basin[J]. Arid Land Geography, 2022, 45(5): 1357-1369. ] | |
[38] | 陈曦, 罗格平, 吴世新, 等. 中亚干旱区土地利用与土地覆被变化[M]. 北京: 科学出版社, 2015: 11-15. |
[Chen Xi, Luo Geping, Wu Shixin, et al. Land use and land cover change in the arid region of Central Asia[M]. Beijing: Science Press, 2015: 11-15. ] | |
[39] | 姚俊强, 曾勇, 李建刚, 等. 中亚区域干湿及极端降水研究综述[J]. 气象科技展, 2020, 10(4): 7-14. |
[Yao Junqiang, Zeng Yong, Li Jiangang, et al. A review of dry-wet climate change and extreme precipitation in Central Asia[J]. Advances in Meteorological Science and Technology, 2020, 10(4): 7-14. ] | |
[40] | 郭利丹, 周海炜, 夏自强, 等. 丝绸之路经济带建设中的水资源安全问题及对策[J]. 中国人口资源与环境, 2015, 25(5): 114-121. |
[Guo Lidan, Zhou Haiwei, Xia Ziqiang, et al. Water resources security and its countermeasure suggestions in building Silk Road Economic Belt[J]. China Population, Resources and Environment, 2015, 25(5): 114-121. ] | |
[41] | Bothe O, Fraedrich K, Zhu X. Precipitation climate of Central Asia and the large-scale atmospheric circulation[J]. Theoretical and Applied Climatology, 2012, 108: 345-354. |
[42] | Lehner B, Döll P. Development and validation of a global database of lakes, reservoirs and wetlands[J]. Journal of hydrology, 2004, 296(1-4): 1-22. |
[43] | 李均力, 陈曦, 包安明. 2003—2009年中亚地区湖泊水位变化的时空特征[J]. 地理学报, 2011, 66(9): 1219-1229. |
[Li Junli, Chen Xi, Bao Anming. Spatial-temporal characteristics of lake level changes in Central Asia during 2003—2009[J]. Acta Geographica Sinica, 2011, 66(9): 1219-1229. ] | |
[44] | 秦伯强. 近百年来亚洲中部内陆湖泊演变及其原因分析[J]. 湖泊科学, 1999, 11(1): 11-19. |
[Qin Baiqiang. A preliminary investigation of lake evolution in 20-century in inland mainland Asia with relation to the global warming[J]. Journal of Lake Sciences, 1999, 11(1): 11-19. ] | |
[45] | 黄秋霞, 赵勇, 何清. 基于CRU资料的中亚地区气候特征[J]. 干旱区研究, 2013, 30(3): 396-403. |
[Huang Qiuxia, Zhao Yong, He Qing. Climatic characteristics in Central Asia based on CRU data[J]. Arid Zone Research, 2013, 30(3): 396-403. ] | |
[46] | White C J, Tanton T W, Rycroft D W. The impact of climate change on the water resources of the Amu Darya Basin in Central Asia[J]. Water Resources Management, 2014, 28: 5267-5281. |
[47] |
吴其慧, 李畅游, 孙标, 等. 1986—2017年呼伦湖湖冰物候特征变化[J]. 地理科学进展, 2019, 38(12): 1933-1943.
doi: 10.18306/dlkxjz.2019.12.009 |
[Wu Qihui, Li Changyou, Sun Biao, et al. Change of ice phenology in the Hulun Lake from 1986 to 2017[J]. Progress in Geography, 2019, 38(12): 1933-1943. ]
doi: 10.18306/dlkxjz.2019.12.009 |
|
[48] | Kropáek J, Maussion F, Chen F, et al. Analysis of ice phenology of lakes on the Tibetan Plateau from MODIS data[J]. The Cryosphere, 2013, 7(1): 287-301. |
[49] | Reed B, Buddle M, Spencer P, et al. Integration of MODIS derived metrics to assess inter annual variability in snow-pack lake ice, and NDVI in Southwest Alaska[J]. Remote Sensing of Environment, 2009, 113(7): 1443-1452. |
[50] | Shen B, Wu J, Zhan S, et al. Spatial variations and controls on the hydrochemistry of surface waters across the Ili-Balkhash Basin, arid Central Asia[J]. Journal of Hydrology, 2021, 600: 126565, doi: 10.1016/j.jhydrol.2021.126565. |
[51] | Brown L C, Duguay C R. The response and role of ice cover in lake-climate interactions[J]. Progress in Physical Geography, 2010, 34(5): 671-704. |
[52] |
姚晓军, 李龙, 赵军, 等. 近10年来可可西里地区主要湖泊冰情时空变化[J]. 地理学报, 2015, 70(7): 1114-1124.
doi: 10.11821/dlxb201507008 |
[Yao Xiaojun, Li Long, Zhao Jun, et al. Spatial-temporal variations of lake ice in the Hoh Xil region from 2000 to 2011[J]. Acta Geographica Sinica, 2015, 70(7): 1114-1124. ]
doi: 10.11821/dlxb201507008 |
|
[53] | Cai Y, Ke C Q, Li X G, et al. Variations of lake ice phenology on the Tibetan Plateau from 2001 to 2017 based on MODIS data[J]. Journal of Geophysical Research: Atmospheres, 2019, 124(2): 825-843. |
[54] | Hou G, Yuan X, Wu S, et al. Phenological changes and driving forces of lake ice in Central Asia from 2002 to 2020[J]. Remote Sensing, 2022, 14(19): 4992, doi: 10.3390/rs14194992. |
[1] | 王淑芝, 温得平. 青藏高原大通河流域径流变化归因分析[J]. 干旱区地理, 2024, 47(2): 203-213. |
[2] | 常学向, 赵文智, 田全彦. 干旱区气候变化及其对山地森林生态系统稳定性和水文过程影响研究进展[J]. 干旱区地理, 2024, 47(2): 228-236. |
[3] | 隋露, 闫志明, 李开放, 何佩恩, 马英杰, 张汝萃. 人类活动及气候变化影响下伊犁河谷生境质量预测研究[J]. 干旱区地理, 2024, 47(1): 104-116. |
[4] | 刘文丽, 陈樟, 赵勇, 梁雨欣. 中亚5月土壤湿度异常对6月降水的影响[J]. 干旱区地理, 2024, 47(1): 38-47. |
[5] | 田昊玮, 陈伏龙, 龙爱华, 刘静, 海洋. 博尔塔拉河源流区径流对气候变化的响应及预测[J]. 干旱区地理, 2023, 46(9): 1432-1442. |
[6] | 艾丽亚, 王永芳, 郭恩亮, 银山, 顾锡羚. 基于GEE的大青山国家级自然保护区NDVI变化及影响因素分析[J]. 干旱区地理, 2023, 46(8): 1279-1290. |
[7] | 黄鑫, 焦黎, 马晓飞, 王勇辉, 阿尔曼·阿布拉. 基于RClimDex模型的近60 a中亚极端降水事件变化特征[J]. 干旱区地理, 2023, 46(7): 1039-1051. |
[8] | 高晓宇, 郝海超, 张雪琪, 陈亚宁. 中国西北干旱区植被水分利用效率变化对气象要素的响应——以新疆为例[J]. 干旱区地理, 2023, 46(7): 1111-1120. |
[9] | 顾朝林, 苏鹤放, 顾江, 高喆, 陈乐琳, 郭力. 论地球科学的新时代[J]. 干旱区地理, 2023, 46(7): 1176-1195. |
[10] | 陈淑君,许国昌,吕志平,马铭悦,李晗羽,朱玉岩. 中国植被覆盖度时空演变及其对气候变化和城市化的响应[J]. 干旱区地理, 2023, 46(5): 742-752. |
[11] | 李娜,武永利,赵桂香,钱锦霞,李芬,赵海英,韩普. 近60 a山西省极端气温事件的年际变化及其对区域增暖的响应[J]. 干旱区地理, 2023, 46(3): 337-348. |
[12] | 任涛涛,李双双,段克勤,何锦屏. 黄土高原热浪型和缺水型骤旱时空变化特征及其影响因素[J]. 干旱区地理, 2023, 46(3): 360-370. |
[13] | 晋子振, 秦翔, 赵求东, 李延召, 刘宇硕, 陈记祖, 王利辉, 王强. 祁连山西段老虎沟流域消融季径流变化特征研究[J]. 干旱区地理, 2023, 46(2): 178-190. |
[14] | 王子超, 王春磊, 马俊俊. 沙尘天气下黑河流域大气长波辐射遥感估算[J]. 干旱区地理, 2023, 46(2): 243-252. |
[15] | 夏怀霞, 梁涵玮, 陈爽, 王倩, 王慎敏. 中亚地区土地与人口城镇化时空耦合特征[J]. 干旱区地理, 2023, 46(1): 115-126. |
|