[1] |
Bowen G J, Cai Z Y, Fiorella R P, et al. Isotopes in the water cycle: Regional- to global-scale patterns and applications[J]. Annual Review of Earth and Planetary Sciences, 2019, 47(1): 453-479.
|
[2] |
Zhang M J, Wang S J. A review of precipitation isotope studies in China: Basic pattern and hydrological process[J]. Journal of Geographical Sciences, 2016, 26(7): 921-938.
doi: 10.1007/s11442-016-1307-y
|
[3] |
Zhang M J, Wang S J. Precipitation isotopes in the Tianshan Mountains as a key to water cycle in arid Central Asia[J]. Sciences in Cold and Arid Regions, 2018, 10(1): 27-37.
|
[4] |
Craig H, Gordon L. Deuterium and oxygen 18 variations in the ocean and the marine atmosphere[C]// Tongiorgi E. Stable Isotopes in Oceanographic Studies and Paleotemperatures. Pisa: CNR-Laboratorio di Geologia Nucleare, 1965: 9-130.
|
[5] |
Galewsky J, Steen-Larsen H C, Field R D, et al. Stable isotopes in atmospheric water vapor and applications to the hydrologic cycle[J]. Reviews of Geophysics, 2016, 54(4): 809-865.
doi: 10.1002/2015rg000512
pmid: 32661517
|
[6] |
Dee S G, Bailey A, Conroy J L, et al. Water isotopes, climate variability, and the hydrological cycle: Recent advances and new frontiers[J]. Environmental Research: Climate, 2023, 2: 022002, doi: 10.1088/2752-5295/accbe1.
|
[7] |
Xia Z Y, Welker J M, Winnick M J. The seasonality of deuterium excess in non-polar precipitation[J]. Global Biogeochemical Cycles, 2022, 36(10): e2021GB007245, doi: 10.1029/2021GB007245.
|
[8] |
Wang D, Tian L D, Risi C, et al. Vehicle-based in situ observations of the water vapor isotopic composition across China: Spatial and seasonal distributions and controls[J]. Atmospheric Chemistry and Physics, 2023, 23(6): 3409-3433.
|
[9] |
Harrington T S, Nusbaumer J, Skinner C B. The contribution of local and remote transpiration, ground evaporation, and canopy evaporation to precipitation across North America[J]. Journal of Geophysical Research: Atmospheres, 2023, 128(7): e2022JD037290, doi: 10.1029/2022JD037290.
|
[10] |
Bershaw J, Lechler A R. The isotopic composition of meteoric water along altitudinal transects in the Tian Shan of Central Asia[J]. Chemical Geology, 2019, 516: 68-78.
doi: 10.1016/j.chemgeo.2019.03.032
|
[11] |
Hren M, Bookhagen B, Blisniuk P, et al. δ18O and δD of streamwaters across the Himalaya and Tibetan Plateau: Implications for moisture sources and paleoelevation reconstructions[J]. Earth and Planetary Science Letters, 2009, 288(1-2): 20-32.
|
[12] |
姚俊强, 李漠岩, 迪丽努尔·托列吾别克, 等. 不同时间尺度下新疆气候“暖湿化”特征[J]. 干旱区研究, 2022, 39(2): 333-346.
|
|
[Yao Junqiang, Li Moyan, Tuoliewubieke Dilinuer, et al. The assessment on “warming-wetting” trend in Xinjiang at multi-scale during 1961—2019[J]. Arid Zone Research, 2022, 39(2): 333-346.]
|
[13] |
Ma Q R, Zhang J, Ma Y J, et al. How do multiscale interactions affect extreme precipitation in eastern Central Asia?[J]. Journal of Climate, 2021, 34(18): 7475-7491.
|
[14] |
陈亚宁, 李稚, 方功焕, 等. 气候变化对中亚天山山区水资源影响研究[J]. 地理学报, 2017, 72(1): 18-26.
doi: 10.11821/dlxb201701002
|
|
[Chen Yaning, Li Zhi, Fang Gonghuan, et al. Impact of climate change on water resources in the Tianshan Mountains, Central Asia[J]. Acta Geographica Science, 2017, 72(1): 18-26.]
|
[15] |
姚俊强, 杨青, 毛炜峄, 等. 西北干旱区大气水分循环要素变化研究进展[J]. 干旱区研究, 2018, 35(2): 269-276.
|
|
[Yao Junqiang, Yang Qing, Mao Weiyi, et al. Progress of study on variation of atmospheric water cycle factors over arid region in northwest China[J]. Arid Zone Research, 2018, 35(2): 269-276.]
|
[16] |
Kong Y L, Pang Z H. A positive altitude gradient of isotopes in the precipitation over the Tianshan Mountains: Effects of moisture recycling and sub-cloud evaporation[J]. Journal of Hydrology, 2016, 542: 222-230.
|
[17] |
Wang S J, Zhang M J, Che Y J, et al. Contribution of recycled moisture to precipitation in oases of arid Central Asia: A stable isotope approach[J]. Water Resources Research, 2016, 52(4): 3246-3257.
|
[18] |
Wang S J, Wang L W, Zhang M J, et al. Quantifying moisture recycling of a leeward oasis in arid Central Asia using a Bayesian isotopic mixing model[J]. Journal of Hydrology, 2022, 613: 128459, doi: 10.1016/j.jhydrol.2022.128459.
|
[19] |
Shi Y D, Wang S J, Wang L W, et al. Isotopic evidence in modern precipitation for the westerly meridional movement in Central Asia[J]. Atmospheric Research, 2021, 259: 105698, doi: 10.1016/j.atmosres.2021.105698.
|
[20] |
Wang S J, Zhang M J, Crawford J, et al. The effect of moisture source and synoptic conditions on precipitation isotopes in arid Central Asia[J]. Journal of Geophysical Research: Atmospheres, 2017, 122(5): 2667-2682.
|
[21] |
Yu W S, Tian L D, Risi C, et al. δ18O records in water vapor and an ice core from the eastern Pamir Plateau: Implications for paleoclimate reconstructions[J]. Earth and Planetary Science Letters, 2016, 456: 146-156.
|
[22] |
Kendall C, Coplen T B. Distribution of oxygen-18 and deuterium in river waters across the United States[J]. Hydrological Processes, 2001, 15(7): 1363-1393.
|
[23] |
Bershaw J, Penny S M, Garzione C N. Stable isotopes of modern water across the Himalaya and eastern Tibetan Plateau: Implications for estimates of paleoelevation and paleoclimate[J]. Journal of Geophysical Research: Atmospheres, 2012, 117: D02110, doi: 10.1029/2011JD016132.
|
[24] |
Fan X M, Gao J, Zhao A B, et al. Spatial variability of stable isotopes in river water over the Tibetan Plateau[J]. Hydrological Processes, 2023, 37(10): e15012, doi: 10.1002/hyp.15012.
|
[25] |
Ren W, Yao T D, Xie S Y, et al. Controls on the stable isotopes in precipitation and surface waters across the southeastern Tibetan Plateau[J]. Journal of Hydrology, 2017, 545: 276-287.
|
[26] |
Liu Q, Tian L D, Wang J L, et al. A study of longitudinal and altitudinal variations in surface water stable isotopes in west Pamir, Tajikistan[J]. Atmospheric Research, 2015, 153: 10-18.
|
[27] |
Wu H W, Wu J L, Li J, et al. Spatial variations of hydrochemistry and stable isotopes in mountainous river water from the Central Asian headwaters of the Tajikistan Pamirs[J]. Catena, 2020, 193: 104639, doi: 10.1016/j.catena.2020.104639.
|
[28] |
陈曦. 中国干旱区自然地理[M]. 北京: 科学出版社, 2010: 25-36.
|
|
[Chen Xi. Physical geography of arid land in China[M]. Beijing: Science Press, 2010: 25-36.]
|
[29] |
王世江. 中国新疆河湖全书[M]. 北京: 中国水利水电出版社, 2010.
|
|
[Wang Shijiang. The rivers and lakes in Xinjiang, China[M]. Beijing: China Water & Power Press, 2010.]
|
[30] |
Yao J Q, Chen Y N, Guan X F, et al. Recent climate and hydrological changes in a mountain-basin system in Xinjiang, China[J]. Earth-Science Reviews, 2022, 226: 103957, doi: 10.1016/j.earscirev.2022.103957.
|
[31] |
丁林, 许强, 张利云, 等. 青藏高原河流氧同位素区域变化特征与高度预测模型建立[J]. 第四纪研究, 2009, 29(1): 1-12.
|
|
[Ding Lin, Xu Qiang, Zhang Liyun, et al. Regional variation of river water oxygen isotope and empirical elevation precipitation models in Tibetan Plateau[J]. Quaternary Sciences, 2009, 29(1): 1-12.]
|
[32] |
刘琴. 青藏高原及其周边地区地表水氢氧稳定同位素空间变化特征[D]. 重庆: 西南大学, 2014.
|
|
[Liu Qin. Variations of river water stable isotopes on the Tibetan Plateau and adjacent regions[D]. Chongqing: Southwest University, 2014.]
|
[33] |
王文祥, 王瑞久, 李文鹏, 等. 塔里木盆地河水氢氧同位素与水化学特征分析[J]. 水文地质工程地质, 2013, 40(4): 29-35.
|
|
[Wang Wenxiang, Wang Ruijiu, Li Wenpeng, et al. Analysis of stable isotopes and hydrochemistry of rivers in Tarim Basin[J]. Hydrogeology and Engineering Geology, 2013, 40(4): 29-35.]
|
[34] |
王立伟. 塔里木盆地降水氢氧稳定同位素景观图谱及其影响过程[D]. 兰州: 西北师范大学, 2022.
|
|
[Wang Liwei. Stable hydrogen and oxygen isoscapes in precipitation and influencing processes across the Tarim Basin[D]. Lanzhou: Northwest Normal University, 2022.]
|
[35] |
Wang Y Q, Zhang X Y, Draxler R R. TrajStat: GIS-based software that uses various trajectory statistical analysis methods to identify potential sources from long-term air pollution measurement data[J]. Environmental Modeling and Software, 2009, 24(8): 938-939.
|
[36] |
Dansgaard W. Stable isotopes in precipitation[J]. Tellus, 1964, 16(4): 436-468.
|
[37] |
Li L, Garzione C N. Spatial distribution and controlling factors of stable isotopes in meteoric waters on the Tibetan Plateau: Implications for paleoelevation reconstruction[J]. Earth and Planetary Science Letters, 2017, 460: 302-314.
|
[38] |
Wu H W, Wu J L, Song F, et al. Spatial distribution and controlling factors of surface water stable isotope values (δ18O and δ2H) across Kazakhstan, Central Asia[J]. Science of the Total Environment, 2019, 678: 53-61.
|
[39] |
Kuang X X, Luo X, Jiao J J, et al. Using stable isotopes of surface water and groundwater to quantify moisture sources across the Yellow River source region[J]. Hydrological Processes, 2019, 33(13): 1835-1850.
|
[40] |
Xing M, Liu W G, Hu J, et al. A set of methods to evaluate the below-cloud evaporation effect on local precipitation isotopic composition: A case study for Xi’an, China[J]. Atmospheric Chemistry and Physics, 2023, 23(16): 9123-9136.
|
[41] |
Sun C J, Li X G, Chen Y N, et al. Spatial and temporal characteristics of stable isotopes in the Tarim River Basin[J]. Isotopes in Environmental and Health Studies, 2016, 52(3): 281-297.
doi: 10.1080/10256016.2016.1125350
pmid: 26862902
|
[42] |
Wang S J, Zhang M J, Hughes C E, et al. Meteoric water lines in arid Central Asia using event-based and monthly data[J]. Journal of Hydrology, 2018, 562: 435-445.
|
[43] |
Sun C J, Chen Y N, Li J, et al. Stable isotope variations in precipitation in the northwesternmost Tibetan Plateau related to various meteorological controlling factors[J]. Atmospheric Research, 2019, 227: 66-78.
|
[44] |
Rowley D B, Garzione C N. Stable isotope-based paleoaltimetry[J]. Annual Review of Earth and Planetary Sciences, 2007, 35: 463-508.
|
[45] |
Wang S J, Jiao R, Zhang M J, et al. Changes in below-cloud evaporation affect precipitation isotopes during five decades of warming across China[J]. Journal of Geophysical Research: Atmospheres, 2021, 126(7): e2020JD033075, doi: 10.1029/2020JD033075.
|
[46] |
Yao J Q, Chen Y N, Zhao Y, et al. Climatic and associated atmospheric water cycle changes over the Xinjiang, China[J]. Journal of Hydrology, 2020, 585: 124823, doi: 10.1016/j.jhydrol.2020.124823.
|
[47] |
Zhu X F, Wu T H, Hu G J, et al. Long-distance atmospheric moisture dominates water budget in permafrost regions of the central Qinghai-Tibet Plateau[J]. Hydrological Processes, 2020, 34(22): 4280-4294.
|