干旱区地理 ›› 2025, Vol. 48 ›› Issue (1): 63-74.doi: 10.12118/j.issn.1000-6060.2024.029 cstr: 32274.14.ALG2024029
常文静1(), 丛士翔1, 王融融1, 丁旭东1, 余海龙1(), 黄菊莹2
收稿日期:
2024-01-05
修回日期:
2024-02-22
出版日期:
2025-01-25
发布日期:
2025-01-21
通讯作者:
余海龙(1979-),男,博士,教授,主要从事土壤地理及节水灌溉方面的研究. E-mail: yhl@nxu.edu.cn作者简介:
常文静(2000-),女,硕士研究生,主要从事全球变化生态学研究. E-mail: Cwj15695019609@163.com
基金资助:
CHANG Wenjing1(), CONG Shixiang1, WANG Rongrong1, DING Xudong1, YU Hailong1(), HUANG Juying2
Received:
2024-01-05
Revised:
2024-02-22
Published:
2025-01-25
Online:
2025-01-21
摘要: 气候变化和人类活动是驱动植被动态变化的两大关键影响因子。归一化植被指数(NDVI)是评估植被动态变化的有效指标,能够合理地评价生态系统变化及其可持续性。基于SPOT/VEGETATION NDVI时间序列数据、气象数据和地表覆盖数据,借助GIS空间分析、相关性分析及残差分析等方法,探讨了1998—2019年毛乌素沙地NDVI时空演变特征及其驱动机制,厘定了气候变化和人类活动两大驱动因素对毛乌素沙地NDVI变化的相对贡献率。结果表明:(1) 1998—2019年毛乌素沙地NDVI整体以0.0067·a-1的速率增长,空间分布上表现为由西北向东南逐渐递增的分布趋势。但NDVI增长整体持续性不强,未来可能出现波动。(2) 气候变化与人类活动共同驱动了毛乌素沙地NDVI的增长。其中,NDVI变化与降水呈显著正相关,而与气温的相关性则较弱。大型生态工程的实施与气候要素的耦合驱动了毛乌素沙地86.30%的植被改善,和已有生态建设工程成效研究结论相符。(3) 归因分析结果表明,人类活动促进了毛乌素沙地83.20%的NDVI增长,而降水量驱动了毛乌素沙地73.14%的NDVI增长,降水量与人类活动的耦合作用对NDVI的影响更为显著。
常文静, 丛士翔, 王融融, 丁旭东, 余海龙, 黄菊莹. 气候变化和人类活动对毛乌素沙地NDVI变化的量化分析[J]. 干旱区地理, 2025, 48(1): 63-74.
CHANG Wenjing, CONG Shixiang, WANG Rongrong, DING Xudong, YU Hailong, HUANG Juying. Quantitative analysis of NDVI changes in Mu Us Sandy Land by climate change and human activities[J]. Arid Land Geography, 2025, 48(1): 63-74.
表2
毛乌素沙地各植被类型NDVI变化的面积占比"
植被类型 | NDVI变化的面积占比/% | ||||||
---|---|---|---|---|---|---|---|
极显著增加 | 显著 增加 | 不显著 增加 | 极显著 减少 | 显著 减少 | 不显著 减少 | ||
栽培植被 | 16.38 | 0.94 | 0.96 | 0.16 | 0.02 | 0.13 | |
阔叶林 | 0.06 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
灌丛 | 1.19 | 0.03 | 0.06 | 0.01 | 0.01 | 0.03 | |
荒漠 | 2.10 | 0.58 | 2.80 | 0.05 | 0.02 | 0.87 | |
草原 | 43.88 | 5.31 | 16.37 | 0.26 | 0.07 | 2.69 | |
草丛 | 0.09 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
草甸 | 3.20 | 0.38 | 0.57 | 0.02 | 0.01 | 0.12 | |
沼泽 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
其他 | 0.34 | 0.07 | 0.12 | 0.01 | 0.01 | 0.04 |
[1] | 史培军, 孙劭, 汪明, 等. 中国气候变化区划(1961—2010年)[J]. 中国科学: 地球科学, 2014, 44(10): 2294-2306. |
[Shi Peijun, Sun Shao, Wang Ming, et al. Climate change regionalization in China (1961—2010)[J]. Science China: Earth Sciences, 2014, 44(10): 2294-2306.] | |
[2] |
原媛, 母艳梅, 邓钰洁, 等. 植被覆盖度和物候变化对典型黑沙蒿灌丛生态系统总初级生产力的影响[J]. 植物生态学报, 2022, 46(2): 162-175.
doi: 10.17521/cjpe.2020.0387 |
[Yuan Yuan, Mu Yanmei, Deng Yujie, et al. Effects of land cover and phenology changes on the gross primary productivity in an Artemisia ordosica shrubland[J]. Chinese Journal of Plant Ecology, 2022, 46(2): 162-175.]
doi: 10.17521/cjpe.2020.0387 |
|
[3] | 贾根锁. IPCC《气候变化与土地特别报告》对陆气相互作用的新认知[J]. 气候变化研究进展, 2020, 16(1): 9-16. |
[Jia Gensuo. New understanding of land-climate interactions from IPCC “special report on climate change and land”[J]. Climate Change Research, 2020, 16(1): 9-16.] | |
[4] |
张清雨, 赵东升, 吴绍洪, 等. 基于生态分区的内蒙古地区植被覆盖变化及其影响因素研究[J]. 地理科学, 2013, 33(5): 594-601.
doi: 10.13249/j.cnki.sgs.2013.05.594 |
[Zhang Qingyu, Zhao Dongsheng, Wu Shaohong, et al. Research on vegetation changes and influence factors based on eco-geographical regions of Inner Mongolia[J]. Scientia Geographica Sinica, 2013, 33(5): 594-601.]
doi: 10.13249/j.cnki.sgs.2013.05.594 |
|
[5] | Su C H, Fu B J. Evolution of ecosystem services in the Chinese Loess Plateau under climatic and land use changes[J]. Global and Planetary Change, 2013, 101: 119-128. |
[6] | Carlson T N, Ripley D A. On the relation between NDVI, fractional vegetation cover, and leaf area index[J]. Remote Sensing of Environment, 1997, 62(3): 241-252. |
[7] | Davies K P, Murphy R J, Bruce E. Detecting historical changes to vegetation in a Cambodian protected area using the Landsat TM and ETM+ sensors[J]. Remote Sensing of Environment, 2016, 187: 332-344. |
[8] |
Nemani R R, Keeling C D, Hashimoto H, et al. Climate-driven increases in global terrestrial net primary production from 1982 to 1999[J]. Science, 2003, 300(5625): 1560-1563.
pmid: 12791990 |
[9] | Guli J, Liang S L, Yi Q X, et al. Vegetation dynamics and responses to recent climate change in Xinjiang using leaf area index as an indicator[J]. Ecological Indicators, 2015, 58: 64-76. |
[10] | Piao S L, Wang X H, Park T J, et al. Characteristics, drivers and feedbacks of global greening[J]. Nature Reviews Earth & Environment, 2020, 1(1): 14-27. |
[11] | Sun Z Y, Wang X F, Yamamoto H, et al. Spatial pattern of GPP variations in terrestrial ecosystems and its drivers: Climatic factors, CO2 concentration and land-cover change, 1982—2015[J]. Ecological Informatics, 2018, 46: 156-165. |
[12] | Lin M, Hou L Z, Qi Z M, et al. Impacts of climate change and human activities on vegetation NDVI in China’s Mu Us Sandy Land during 2000—2019[J] Ecological Indicators, 2022, 142: 109164, doi: 10.1016/j.ecolind.2022.109164. |
[13] |
张红丽, 韩富强, 张良, 等. 西北地区气候暖湿化空间与季节差异分析[J]. 干旱区研究, 2023, 40(4): 517-531.
doi: 10.13866/j.azr.2023.04.01 |
[Zhang Hongli, Han Fuqiang, Zhang Liang, et al. Analysis of spatial and seasonal variations in climate warming and humidification in northwest China[J]. Arid Zone Research, 2023, 40(4): 517-531.]
doi: 10.13866/j.azr.2023.04.01 |
|
[14] | Wang X, Song J L, Xiao Z Q, et al. Desertification in the Mu Us Sandy Land in China: Response to climate change and human activity from 2000 to 2020[J]. Geography and Sustainability, 2022, 3(2): 177-189. |
[15] | Ji X Y, Yang J Z, Liu J Y, et al. Analysis of spatial-temporal changes and driving forces of desertification in the Mu Us Sandy Land from 1991 to 2021[J]. Sustainability, 2023, 15(13): 10399, doi: 10.3390/su151310399. |
[16] | Cai H Y, Yang X H, Xu X L. Human-induced grassland degradation/restoration in the central Tibetan Plateau: The effects of ecological protection and restoration projects[J]. Ecological Engineering, 2015, 83: 112-119. |
[17] | 徐勇, 黄雯婷, 郭振东, 等. 2000—2020年我国西南地区植被NEP时空变化及其驱动因素的相对贡献[J]. 环境科学研究, 2023, 36(3): 557-570. |
[Xu Yong, Huang Wenting, Guo Zhendong, et al. Spatio-temporal variation of vegetation net ecosystem productivity and relative contribution of driving forces in southwest China from 2000 to 2020[J]. Research of Environmental Sciences, 2023, 36(3): 557-570.] | |
[18] | Zhou D J, Zhao X, Hu H F, et al. Long-term vegetation changes in the four mega-sandy lands in Inner Mongolia, China[J]. Landscape Ecology, 2015, 30(9): 1613-1626. |
[19] | 杨梅焕, 靳小燕, 王涛. 毛乌素沙地植被物候变化及其对气候变化的响应[J]. 水土保持通报, 2022, 42(2): 242-249. |
[Yang Meihuan, Jin Xiaoyan, Wang Tao. Vegetation phenology change of Mu Us Sandy Land and its response to climate change[J]. Bulletin of Soil and Water Conservation, 2022, 42(2): 242-249.] | |
[20] | Han X Y, Jia G P, Yang G, et al. Spatiotemporal dynamic evolution and driving factors of desertification in the Mu Us Sandy Land in 30 years[J]. Scientific Reports, 2020, 10(1): 21734, doi: 10.1038/s41598-020-78665-9. |
[21] | Feng K, Wang T, Liu S L, et al. Path analysis model to identify and analyse the causes of aeolian desertification in Mu Us Sandy Land, China[J]. Ecological Indicators, 2021, 124: 107386, doi: 10.1016/j.ecolind.2021.107386. |
[22] | 陆晴, 吴绍洪, 赵东升. 1982—2013年青藏高原高寒草地覆盖变化及与气候之间的关系[J]. 地理科学, 2017, 37(2): 292-300. |
[Lu Qing, Wu Shaohong, Zhao Dongsheng. Variations in alpine grassland cover and its correlation with climate variables on the Qinghai-Tibet Plateau in 1982—2013[J]. Scientia Geographica Sinica, 2017, 37(2): 292-300.]
doi: 10.13249/j.cnki.sgs.2017.02.016 |
|
[23] | 刘玉红, 张筠, 张春华, 等. 2000—2015年山东省植被净初级生产力时空变化及其对气候变化的响应[J]. 生态学杂志, 2019, 38(5): 1464-1471. |
[Liu Yuhong, Zhang Jun, Zhang Chunhua, et al. Spatial and temporal variations of vegetation net primary productivity and its responses to climate change in Shandong Province from 2000 to 2015[J]. Chinese Journal of Ecology, 2019, 38(5): 1464-1471.] | |
[24] |
李舒婷, 周艺, 王世新, 等. 2001—2015年内蒙古NDVI时空变化及其对降水和气温的响应[J]. 中国科学院大学学报, 2019, 36(1): 48-55.
doi: 10.7523/j.issn.2095-6134.2019.01.008 |
[Li Shuting, Zhou Yi, Wang Shixin, et al. Spatial-temporal variation of NDVI and its responses to precipitation and temperature in Inner Mongolia from 2001 to 2015[J]. Journal of University of Chinese Academy of Sciences, 2019, 36(1): 48-55.]
doi: 10.7523/j.issn.2095-6134.2019.01.008 |
|
[25] |
高海东, 庞国伟, 李占斌, 等. 黄土高原植被恢复潜力研究[J]. 地理学报, 2017, 72(5): 863-874.
doi: 10.11821/dlxb201705008 |
[Gao Haidong, Pang Guowei, Li Zhanbin, et al. Evaluating the potential of vegetation restoration in the Loess Plateau[J]. Acta Geographica Sinica, 2017, 72(5): 863-874.]
doi: 10.11821/dlxb201705008 |
|
[26] | 耿庆玲, 陈晓青, 赫晓慧, 等. 中国不同植被类型归一化植被指数对气候变化和人类活动的响应[J]. 生态学报, 2022, 42(9): 3557-3568. |
[Geng Qingling, Chen Xiaoqing, He Xiaohui, et al. Vegetation dynamics and its response to climate change and human activities based on different vegetation types in China[J]. Acta Ecologica Sinica, 2022, 42(9): 3557-3568.] | |
[27] |
尹振良, 冯起, 王凌阁, 等. 2000—2019年中国西北地区植被覆盖变化及其影响因子[J]. 中国沙漠, 2022, 42(4): 11-21.
doi: 10.7522/j.issn.1000-694X.2021.00200 |
[Yin Zhenliang, Feng Qi, Wang Lingge, et al. Vegetation coverage change and its influencing factors across the northwest region of China during 2000—2019[J]. Journal of Desert Research, 2022, 42(4): 11-21.]
doi: 10.7522/j.issn.1000-694X.2021.00200 |
|
[28] | 于璐, 武志涛, 杜自强, 等. 气候变化背景下京津风沙源区人类活动对植被影响的量化分析[J]. 应用生态学报, 2020, 31(6): 2007-2014. |
[Yu Lu, Wu Zhitao, Du Ziqiang, et al. Quantitative analysis of the effects of human activities on vegetation in Beijing-Tianjin sandstorm source region under the climate change[J]. Chinese Journal of Applied Ecology, 2020, 31(6): 2007-2014.] | |
[29] |
金凯, 王飞, 韩剑桥, 等. 1982—2015年中国气候变化和人类活动对植被NDVI变化的影响[J]. 地理学报, 2020, 75(5): 961-974.
doi: 10.11821/dlxb202005006 |
[Jin Kai, Wang Fei, Han Jianqiao, et al. Contribution of climatic change and human activities to vegetation NDVI change over China during 1982—2015[J]. Acta Geographica Sinica, 2020, 75(5): 961-974.] | |
[30] | 程兀杰, 孟妮娜, 蔡昕楠, 等. 陕西省NDVI时空变化及其对气候和人类活动的响应[J]. 人民黄河, 2023, 45(4): 28-34. |
[Cheng Wujie, Meng Nina, Cai Xinnan, et al. Temporal and spatial variation of NDVI in Shaanxi Province and its response to climate change and human activities[J]. Yellow River, 2023, 45(4): 28-34.] | |
[31] | Brinkmann K, Dickhoefer U, Schlecht E, et al. Quantification of aboveground rangeland productivity and anthropogenic degradation on the Arabian Peninsula using Landsat imagery and field inventory data[J]. Remote Sensing of Environment, 2011, 115(2): 465-474. |
[32] |
赵媛媛, 丁国栋, 高广磊, 等. 毛乌素沙区沙漠化土地防治区划[J]. 中国沙漠, 2017, 37(4): 635-643.
doi: 10.7522/j.issn.1000-694X.2017.00033 |
[Zhao Yuanyuan, Ding Guodong, Gao Guanglei, et al. Regionalization for aeolian desertification control in the Mu Us Sandy Land region, China[J]. Journal of Desert Research, 2017, 37(4): 635-643.]
doi: 10.7522/j.issn.1000-694X.2017.00033 |
|
[33] |
王旭洋, 李玉霖, 连杰, 等. 半干旱典型风沙区植被覆盖度演变与气候变化的关系及其对生态建设的意义[J]. 中国沙漠, 2021, 41(1): 183-194.
doi: 10.7522/j.issn.1000-694X.2020.00089 |
[Wang Xuyang, Li Yulin, Lian Jie, et al. Relationship between vegetation coverage and climate change in semiarid sandy land and the significance to ecological construction[J]. Journal of Desert Research, 2021, 41(1): 183-194.]
doi: 10.7522/j.issn.1000-694X.2020.00089 |
|
[34] | 张云芝. 2000—2019年毛乌素沙地-黄土过渡带土地绿度与水热变化及其作用机制研究[D]. 北京: 中国科学院大学, 2021. |
[Zhang Yunzhi. Study on evolvement of moisture-heat and the response of land greenness in transition zone between Mu Us Sandy Land and Loess Plateau from 2000 to 2019[D]. Beijing: University of Chinese Academy of Sciences, 2021.] | |
[35] | 高国雄. 毛乌素沙地东南缘人工植被结构与生态功能研究[D]. 北京: 北京林业大学, 2007. |
[Gao Guoxiong. Study on structure and ecological function of artificial vegetation in southeast margin of Maowusu Sand Land[D]. Beijing: Beijing Forestry University, 2007.] | |
[36] | 李登科, 范建忠, 王娟. 陕西省植被覆盖度变化特征及其成因[J]. 应用生态学报, 2010, 21(11): 2896-2903. |
[Li Dengke, Fan Jianzhong, Wang Juan. Change characteristics and their causes of fractional vegetation coverage (FVC) in Shaanxi Province[J]. Chinese Journal of Applied Ecology, 2010, 21(11): 2896-2903.]
pmid: 21361016 |
|
[37] | 殷崎栋, 柳彩霞, 田野. 基于MODIS NDVI数据的陕西省植被绿度时空变化及人类活动影响[J]. 生态学报, 2021, 41(4): 1571-1582. |
[Yin Qidong, Liu Caixia, Tian Ye. Spatio-temporal greenness and anthropogenic analysis in Shaanxi based on MODIS NDVI from 2001 to 2018[J]. Acta Ecologica Sinica, 2021, 41(4): 1571-1582.] | |
[38] | 周伟, 牟凤云, 刚成诚, 等. 1982—2010年中国草地净初级生产力时空动态及其与气候因子的关系[J]. 生态学报, 2017, 37(13): 4335-4345. |
[Zhou Wei, Mou Fengyun, Gang Chengcheng, et al. Spatio-temporal dynamics of grassland net primary productivity and their relationship with climatic factors from 1982 to 2010 in China[J]. Acta Ecologica Sinica, 2017, 37(13): 4335-4345.] | |
[39] |
高江波, 焦珂伟, 吴绍洪. 1982—2013年中国植被NDVI空间异质性的气候影响分析[J]. 地理学报, 2019, 74(3): 534-543.
doi: 10.11821/dlxb201903010 |
[Gao Jiangbo, Jiao Kewei, Wu Shaohong. Revealing the climatic impacts on spatial heterogeneity of NDVI in China during 1982—2013[J]. Acta Geographica Sinica, 2019, 74(3): 534-543.]
doi: 10.11821/dlxb201903010 |
|
[40] | Liu Y, Li Y, Li S, et al. Spatial and temporal patterns of global NDVI trends: Correlations with climate and human factors[J]. Remote Sensing, 2015, 7(10): 13233-13250. |
[41] | 张强, 杨金虎, 王朋岭, 等. 西北地区气候暖湿化的研究进展与展望[J]. 科学通报, 2023, 68(14): 1814-1828. |
Zhang Qiang, Yang Jinhu, Wang Pengling, et al. Progress and prospect on climate warming and humidification in northwest China[J]. Chinese Science Bulletin, 2023, 68(14): 1814-1828.] | |
[42] | 郑颖娟, 刘军会, 刘洋, 等. 2000—2018年鄂尔多斯市植被覆盖度变化及驱动因素分析[J]. 环境科学研究, 2022, 35(11): 2458-2468. |
[Zheng Yingjuan, Liu Junhui, Liu Yang, et al. Analysis of vegetation coverage change and driving factors in Ordos City from 2000 to 2018[J]. Research of Environmental Sciences, 2022, 35(11): 2458-2468.] | |
[43] | 张梦珈, 王晓荣. 浅谈陕北毛乌素沙地大规模喷灌农田防护林体系的建设[J]. 榆林学院学报, 2022, 32(6): 57-61. |
[Zhang Mengjia, Wang Xiaorong. Construction of a large-scale farmland and shelter forest sprinkler system in the Mu Us Land in northern Shaanxi[J]. Journal of Yulin University, 2022, 32(6): 57-61.] | |
[44] | 陈占飞. 毛乌素沙漠南缘马铃薯规模化种植对生态环境的影响[J]. 中国农业信息, 2016(5): 126-127. |
[Chen Zhanfei. Influence of potato large-scale cultivation on ecological environment in the southern margin of the Mu Us Land[J]. China Agricultural Information, 2016(5): 126-127.] |
[1] | 康立民, 滕心如, 车佳航, 怀保娟. 昆仑山北坡区域积雪时空变化特征[J]. 干旱区地理, 2024, 47(9): 1462-1471. |
[2] | 王南, 刘泽轩, 郑江华, 仲涛, 孟乘枫. 天山冰湖分布时空特征及驱动力分析[J]. 干旱区地理, 2024, 47(9): 1472-1481. |
[3] | 超宝, 赵媛媛, 武海岩, 李媛, 苏宁. 2000—2020年蒙古高原生态系统服务及其对气候因子的响应[J]. 干旱区地理, 2024, 47(9): 1577-1586. |
[4] | 夏婷婷, 薛璇, 王灏伟, 徐文哲, 盛紫怡, 汪洋. 昆仑山北坡陆地水储量变化及其驱动因素分析[J]. 干旱区地理, 2024, 47(8): 1292-1303. |
[5] | 朱成刚, 陈亚宁, 张明军, 车彦军, 孙美平, 赵锐锋, 汪洋, 刘玉婷. 昆仑山北坡水资源科学考察初报[J]. 干旱区地理, 2024, 47(7): 1097-1105. |
[6] | 张晶, 马龙, 刘廷玺, 孙柏林, 乔子戌. 基于贺兰山青海云杉(Picea crassifolia)树轮对过去202 a最低气温的重建[J]. 干旱区地理, 2024, 47(6): 909-921. |
[7] | 樊静, 申彦波, 常蕊. 气候变化对太阳能资源评估典型气象年选取的影响[J]. 干旱区地理, 2024, 47(6): 922-931. |
[8] | 利辉, 刘铁军, 王少慧, 刘东伟. 2001—2021年内蒙古荒漠草原水分利用效率时空变化特征及影响因素研究[J]. 干旱区地理, 2024, 47(6): 993-1003. |
[9] | 向燕芸, 王弋, 陈亚宁, 张齐飞, 张玉杰. 基于CMIP6模式的叶尔羌河流域未来水文干旱风险预估[J]. 干旱区地理, 2024, 47(5): 798-809. |
[10] | 赵明杰, 王宁练, 石晨烈, 侯靖琪. 2000—2020年中亚大型湖泊湖冰物候时空变化[J]. 干旱区地理, 2024, 47(4): 561-575. |
[11] | 成龙, 吴波, 贾晓红, 殷婕, 费兵强, 张令光, 岳艳鹏, 孙迎涛, 李佳. 基于连续观测数据的毛乌素沙地生长季土壤水分动态及其对降雨的响应[J]. 干旱区地理, 2024, 47(4): 648-661. |
[12] | 王淑芝, 温得平. 青藏高原大通河流域径流变化归因分析[J]. 干旱区地理, 2024, 47(2): 203-213. |
[13] | 常学向, 赵文智, 田全彦. 干旱区气候变化及其对山地森林生态系统稳定性和水文过程影响研究进展[J]. 干旱区地理, 2024, 47(2): 228-236. |
[14] | 修晓敏, 吴波, 费兵强, 殷婕, 张令光, 李佳, 庞营军, 贾晓红. 基于Meta分析的毛乌素沙地荒漠化动态研究[J]. 干旱区地理, 2024, 47(12): 2051-2063. |
[15] | 廖婉约, 介冬梅, 高桂在, 王江永. 中晚全新世科尔沁沙地气候变化及沙地演化研究[J]. 干旱区地理, 2024, 47(11): 1876-1886. |
|