干旱区地理 ›› 2024, Vol. 47 ›› Issue (2): 228-236.doi: 10.12118/j.issn.1000-6060.2023.168 cstr: 32274.14.ALG2023168
收稿日期:
2023-04-13
修回日期:
2023-08-01
出版日期:
2024-02-25
发布日期:
2024-03-14
作者简介:
常学向(1968-),男,研究员,主要从事干旱区生态水文学、恢复生态学和生物多样性等方面的研究. E-mail: chxx@lzb.ac.cn
基金资助:
CHANG Xuexiang(), ZHAO Wenzhi, TIAN Quanyan
Received:
2023-04-13
Revised:
2023-08-01
Published:
2024-02-25
Online:
2024-03-14
摘要:
在干旱区,水是形成绿洲的根本要素。干旱区高寒山地是维系西北干旱区绿洲存在、是当地国民经济持续发展和生态环境稳定的水源地,山地森林生态系统具有重要的涵养水源功能,有“绿色水库”之称。气候变化将改变山地生态系统结构、组成和水循环,加剧水资源短缺,威胁干旱区绿洲安全。回顾并综述了干旱区气候变化及其对干旱区山地森林生态系统稳定性和水文过程的影响研究进展,指出了研究中存在的问题,并提出未来在干旱区山地仍需要评估优于1 km空间分辨率的气候变化趋势,从多尺度、多界面、多学科、多方法开展气候变化对干旱区山地森林生态系统稳定性和水文过程影响的综合研究,以促进干旱区山地生态学的发展,为干旱区管理部门提供适应和缓解气候变化、科学的制定气候变化条件下水资源管理方案、实现水资源的有效管理奠定理论基础,促进干旱区气候变化条件下的环境和社会经济可持续性发展。
常学向, 赵文智, 田全彦. 干旱区气候变化及其对山地森林生态系统稳定性和水文过程影响研究进展[J]. 干旱区地理, 2024, 47(2): 228-236.
CHANG Xuexiang, ZHAO Wenzhi, TIAN Quanyan. Advances in climate change and its impact on the stability of mountain forest ecosystems and hydrological processes in arid regions[J]. Arid Land Geography, 2024, 47(2): 228-236.
[1] | IPCC. Summary for policymakers[C]// StockerT F, QinD, PlattnerG K, et al. Climate Change 2013:The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2013. |
[2] | IPCC. Global warming of 1.5 ℃[C]// Masson-DelmotteV, ZhaiP, PörtnerH, et al. An IPCC Special Report on the Impacts of Global Warming of 1.5 ℃ Above Pre-industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty. Cambridge: Cambridge University Press, 2018 |
[3] | IPCC. Summary for policymakers[C]// Masson-DelmotteV, ZhaiP, PiraniA, et al. Climate Change 2021: The Physical Science Basis:Contribution of Working Group I to the Sixth Assessment Report, of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2021. |
[4] | Qin D, Plattner G K, Tignor M, et al. Climate change 2013: The physical science basis[M]. Cambridge: Cambridge University Press, 2014. |
[5] |
陈亚宁, 李稚, 范煜婷, 等. 西北干旱区气候变化对水文水资源影响研究进展[J]. 地理学报, 2014, 69(9): 1295-1304.
doi: 10.11821/dlxb201409005 |
[ Chen Yaning, Li Zhi, Fan Yuting, et al. Research progress on the impact of climate change on water resources in the arid region of northwest China[J]. Acta Geographica Sinica, 2014, 69(9): 1295-1304. ]
doi: 10.11821/dlxb201409005 |
|
[6] |
Ellison D, Morris C E, Locatelli B, et al. Trees, forests and water: Cool insights for a hot world[J]. Global Environmental Change, 2017, 43: 51-61.
doi: 10.1016/j.gloenvcha.2017.01.002 |
[7] |
Kelley C P, Mohtadi S, Cane M A, et al. Climate change in the Fertile Crescent and implications of the recent Syrian drought[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112: 3241-3246.
doi: 10.1073/pnas.1421533112 pmid: 25733898 |
[8] | SIWI (Stockholm International Water Institute). Managing the forest water nexus: Opportunities for climate change mitigation and adaptation[R]. 2019. https://www.siwi.org/publications/managing-the-forest-water-nexus/. |
[9] | 王涛. 我国绿洲化及其研究的若干问题初探[J]. 中国沙漠, 2010, 30(5): 995-998. |
[ Wang Tao. Some issues on oasification study in China[J]. Journal of Desert Research, 2010, 30(5): 995-998. ] | |
[10] | 王金叶, 于澎涛, 王彦辉. 森林生态水文过程研究: 以甘肃祁连山水源涵养林为例[M]. 北京: 科学出版社, 2008. |
[ Wang Jinye, Yu Pengtao, Wang Yanhui. Study on forest ecohydrological process: A case study of water conservation forest in Qilian Mountains, Gansu Province[M]. Beijing: Science Press, 2008. ] | |
[11] |
Ehbrecht M, Seidel D, Annighöfer P, et al. Global patterns and climatic controls of forest structural complexity[J]. Nature Communications, 2021, 12: 519, doi: 10.1038/s41467-020-20767-z.
pmid: 33483481 |
[12] | Ali A, Sanaei A, Li M, et al. Impacts of climatic and edaphic factors on the diversity, structure and biomass of species-poor and structurally-complex forests[J]. Science of the Total Environment, 2020, 706: 135719, doi: 10.1016/j.scitotenv.2019.135719. |
[13] |
Gazol A, Camarero J J, Vicente-Serrano S M, et al. Forest resilience to drought varies across biomes[J]. Global Change Biology, 2018, 24: 2143-2158.
doi: 10.1111/gcb.14082 pmid: 29488293 |
[14] | Vose J M, Miniat C F, Luce C H, et al. Ecohydrological implications of drought for forests in the United States[J]. Agricultural and Forest Meteorology, 2016, 380: 335-345. |
[15] |
Li B, Chen Y, Shi X, et al. Temperature and precipitation changes in different environments in the arid region of northwest China[J]. Theoretical and Applied Climatology, 2013, 112(3/4): 589-596.
doi: 10.1007/s00704-012-0753-4 |
[16] | 姚俊强, 杨青, 刘志辉, 等. 中国西北干旱区降水时空分布特征[J]. 生态学报, 2015, 35(17): 5846-5855. |
[ Yao Junqiang, Yang Qing, Liu Zhihui, et al. Spatio-temporal change of precipitation in arid region of the northwest China[J]. Acta Ecologica Siniea, 2015, 35(17): 5846-5855. ] | |
[17] | 汪有奎, 贾文雄, 刘潮海, 等. 祁连山北坡的生态环境变化[J]. 林业科学, 2012, 48(4): 21-26. |
[ Wang Youkui, Jia Wenxiong, Liu Chaohai, et al. Ecological environment change in the north slope of the Qilianshan Mountains[J]. Scientia Silvae Sinicae, 2012, 48(4): 21-26. ] | |
[18] | 程鹏, 孔祥伟, 罗汉, 等. 近60 a以来祁连山中部气候变化及其径流响应研究[J]. 干旱区地理, 2020, 43(5): 1192-1201. |
[ Cheng Peng, Kong Xiangwei, Luo Han, et al. Climate change and its runoff response in the middle section of the Qilian Mountains in the past 60 years[J]. Arid Land Geography, 2020, 43(5): 1192-1201. ] | |
[19] | 温煜华, 吕越敏, 李宗省. 近60 a祁连山极端降水变化研究[J]. 干旱区地理, 2021, 44(5): 1199-1212. |
[ Wen Yuhua, Lü Yuemin, Li Zongxing. Changes of extreme precipitation in Qilian Mountains in recent 60 years[J]. Arid Land Geography, 2021, 44(5): 1199-1212. ] | |
[20] |
Huang J, Yu H, Dai A, et al. Drylands face potential threat under 2 ℃ global warming targets[J]. Nature Climate Change, 2017, 7: 417-422.
doi: 10.1038/nclimate3275 |
[21] |
Nadeau C P, Urban M C, Bridle J R. Climates past, present, and yet-to-come shape climate change vulnerabilities[J]. Trends in Ecology & Evolution, 2017, 32: 786-800.
doi: 10.1016/j.tree.2017.07.012 |
[22] | Gaines W L, Hessburg P F, Aplet G H, et al. Climate change and forest management on federal lands in the Pacific Northwest, USA: Managing for dynamic landscapes[J]. Forest Ecology and Management, 2022, 504: 119794, doi: 10.1016/j.foreco.2021.119794. |
[23] | Teng M, Zeng L, Hu W, et al. The impacts of climate changes and human activities on net primary productivity vary across an ecotone zone in northwest China[J]. Science of the Total Environment, 2020, 714: 136691, doi: 10.1016/j.scitotenv.2020.136691. |
[24] |
He Z, Du J, Chen L, et al. Impacts of recent climate extremes on spring phenology in arid-mountain ecosystems in China[J]. Agricultural and Forest Meteorology, 2018, 260-261: 31-40.
doi: 10.1016/j.agrformet.2018.05.022 |
[25] | 贾文雄, 赵珍, 俎佳星, 等. 祁连山不同植被类型的物候变化及其对气候的响应[J]. 生态学报, 2016, 36(23): 7826-7840. |
[ Jia Wenxiong, Zhao Zhen, Zu Jiaxing, et al. Phenological variation in different vegetation types and their response to climate change in the Qilian Mountains, China, 1982—2014[J]. Acta Ecologica Sinica, 2016, 36(23): 7826-7840. ] | |
[26] |
Gao L, Gou X, Deng Y, et al. Increased growth of Qinghai spruce in northwestern China during the recent warming hiatus[J]. Agricultural and Forest Meteorology, 2018, 260-261: 9-16.
doi: 10.1016/j.agrformet.2018.05.025 |
[27] |
He Z, Zhao W, Zhang L, et al. Response of tree recruitment to climatic variability in the alpine treeline ecotone of the Qilian Mountains, northwestern China[J]. Forest Science, 2013, 59(1): 118-126.
doi: 10.5849/forsci.11-044 |
[28] |
Hutchison C, Gravel D, Guichard F, et al. Effect of diversity on growth, mortality, and loss of resilience to extreme climate events in a tropical planted forest experiment[J]. Scientific Reports, 2018, 8(1): 15443, doi: 10.1038/s41598-018-33670-x.
pmid: 30337582 |
[29] | McDowell N G, Allen C D, Anderson-Teixeira K, et al. Pervasive shifts in forest dynamics in a changing world[J]. Science, 2020, 368: eaaz9463, doi: 10.1126/science.aaz9463. |
[30] |
Wu X, Liu H, Li X, et al. Differentiating drought legacy effects on vegetation growth over the temperate Northern Hemisphere[J]. Global Change Biology, 2018, 24: 504-516.
doi: 10.1111/gcb.13920 pmid: 28973825 |
[31] |
Vachaud G, de Silans A P, Balabanis P, et al. Temporal stability of spatially measured soil water probability density function[J]. Soil Science Society America Journal, 1985, 49: 822-828.
doi: 10.2136/sssaj1985.03615995004900040006x |
[32] |
De Keersmaecker W, Lhermitte S, Tits L, et al. A model quantifying global vegetation resistance and resilience to short-term climate anomalies and their relationship with vegetation cover[J]. Global Ecology Biogeography, 2015, 24: 539-548.
doi: 10.1111/geb.2015.24.issue-5 |
[33] |
Pennekamp F, Pontarp M, Tabi A, et al. Biodiversity increases and decreases ecosystem stability[J]. Nature, 2018, 563: 109-112.
doi: 10.1038/s41586-018-0627-8 |
[34] |
Huang K, Xia J. High ecosystem stability of evergreen broadleaf forests under severe droughts[J]. Global Change Biology, 2019, 25: 3494-3503.
doi: 10.1111/gcb.14748 pmid: 31276270 |
[35] |
Ouyang S, Xiang W, Gou M, et al. Stability in subtropical forests: The role of tree species diversity, stand structure, environmental and socio-economic conditions[J]. Global Ecology and Biogeography, 2021, 30: 500-513.
doi: 10.1111/geb.v30.2 |
[36] |
Li D, Wu S, Liu L, et al. Vulnerability of the global terrestrial ecosystems to climate change[J]. Global Change Biology, 2018, 24: 4095-4106.
doi: 10.1111/gcb.14327 pmid: 29804316 |
[37] |
Eller C, Burgess S, Oliveira R. Environmental controls in the water use patterns of a tropical cloud forest tree species, Drimys brasiliensis (Winteraceae)[J]. Tree Physiology, 2015, 35: 387-399.
doi: 10.1093/treephys/tpv001 |
[38] | Hegerl G C, Black E, Allan R P, et al. Challenges in quantifying changes in the global water cycle[J]. Bulletin of the American Meteorollgical Society, 2015, 96: 1097-1115. |
[39] |
Zhang k, Kimball J S, Nemani R R, et al. Vegetation greening and climate change promote multidecadal rises of global land evapotranspiration[J]. Scientific Reports, 2015, 5: 15956, doi: 10.1038/srep15956.
pmid: 26514110 |
[40] |
Kim Y, Band L E, Ficklin D L. Projected hydrological changes in the North Carolina piedmont using bias-corrected North American Regional Climate Change Assessment Program (NARCCAP) data[J]. Journal of Hydrology: Regional Studies, 2017, 12: 273-288.
doi: 10.1016/j.ejrh.2017.06.005 |
[41] | 马雪华. 森林水文学[M]. 北京: 中国林业出版社, 1993. |
[ Ma Xuehua. Forest hydrology[M]. Beijing: China Forestry Publishing House, 1993. ] | |
[42] |
Liu S. A new model for the prediction of rainfall interception in forest canopies[J]. Ecological Modelling, 1997, 99(2): 151-159.
doi: 10.1016/S0304-3800(97)01948-0 |
[43] | Gash J H C. An analytical model of rainfall interception by forests[J]. Quarterly Journal of the Royal Meteorologycal Society, 1979, 105: 43-55. |
[44] | Eliades M, Bruggeman A, Djuma H, et al. Testing three rainfall interception models and different parameterization methods with data from an open Mediterranean pine forest[J]. Agricultural and Forest Meteorolgy, 2022, 313: 108755, doi: 10.1016/j.agrformet.2021.108755. |
[45] |
Vereecken H, Pachepsky Y, Simmer C, et al. On the role of patterns in understanding the functioning of soil-vegetation-atmosphere systems[J]. Journal of Hydrology, 2016, 542: 63-86.
doi: 10.1016/j.jhydrol.2016.08.053 |
[46] |
Fatichi S, Katul G G, Ivanov V Y, et al. Abiotic and biotic controls of soil moisture spatiotemporal variability and the occurrence of hysteresis[J]. Water Resources Research, 2015, 51: 3505-3524.
doi: 10.1002/wrcr.v51.5 |
[47] | Liu Q, Hao Y, Stebler E, et al. Impact of plant functional types on coherence between precipitation and soil moisture: A wavelet analysis[J]. Geophysical Research Letters, 2017, 44: 12197-12207. |
[48] | Gonzalez-Ollauri A, Stokes A, Mickovski S B. A novel framework to study the effect of tree architectural traits on stemflow yield and its consequences for soil-water dynamics[J]. Journal of Hydrology, 2020, 582: 124448, doi: 10.1016/j.jhydrol.2019.124448. |
[49] | Agee E, He L, Bisht G, et al. Root lateral interactions drive water uptake patterns under water limitation[J]. Advances Water Resources, 2021, 151: 103896, doi: 10.1016/j.advwatres.2021.103896. |
[50] |
Zeng Z, Peng L, Piao S. Response of terrestrial evapotranspiration to Earth’s greening[J]. Current Opinion Environmental Sustainability, 2018, 33: 9-25.
doi: 10.1016/j.cosust.2018.03.001 |
[51] |
Palmquist K A, Schlaepfer D R, Bradford J B, et al. Mid-latitude shrub steppe plant communities: Climate change consequences for soil water resources[J]. Ecology, 2016, 97(9): 2342-2354.
doi: 10.1002/ecy.1457 pmid: 27859085 |
[52] |
Nouri M, Homaee M, Bannayan M. Quantitative trend, sensitivity and contribution analyses of reference evapotranspiration in some arid environments under climate change[J]. Water Resources Management, 2017, 31: 2207-2224.
doi: 10.1007/s11269-017-1638-1 |
[53] |
da Costa A C L, Rowland L, Oliveira R S. Stand dynamics modulate water cycling and mortality risk in droughted tropical forest[J]. Global Change Biology, 2018, 24: 249-258.
doi: 10.1111/gcb.13851 pmid: 28752626 |
[54] |
Ning T, Li Z, Feng Q, et al. Effects of forest cover change on catchment evapotranspiration variation in China[J]. Hydrological Processes, 2020, 34: 2219-2228.
doi: 10.1002/hyp.v34.10 |
[55] | Wang L, Liu Z, Guo J, et al. Estimate canopy transpiration in larch plantations via the interactions among reference evapotranspiration, leaf area index, and soil moisture[J]. Forest Ecology and Management, 2021, 481: 118749, doi: 10.1016/j.foreco.2020.118749. |
[56] | Yang L, Feng Q, Adamowski J F, et al. The role of climate change and vegetation greening on the variation of terrestrial evapotranspiration in northwest China’s Qilian Mountains[J]. Science of the Total Environment, 2021, 759: 143532, doi: 10.1016/j.scitotenv.2020.143532. |
[57] | Li Y, Chen Q, He K, et al. The accuracy improvement of sap flow prediction in Picea crassifolia Kom based on the back-propagation neural network model[J]. Hydrological Processes, 2022, 36(2): e14490, doi: 10.1002/hyp.14490. |
[58] | Li X, Vereecken H. Observation and measurement of ecohydrological processes[M]. Berlin: Springer, 2019: 417-433. |
[59] |
Song X, Gao X, Dyck M, et al. Soil water and root distribution of apple tree (Malus pumila Mill) stands in relation to stand age and rainwater collection and infiltration system (RWCI) in a hilly region of the Loess Plateau, China[J]. Catena, 2018, 170: 324-334.
doi: 10.1016/j.catena.2018.06.026 |
[60] | Zhang T, Song L, Zhu J, et al. Spatial distribution of root systems of Pinus sylvestris var. mongolica trees with different ages in a semi-arid sandy region of northeast China[J]. Forest Ecology and Management, 2021, 483: 118776, doi: 10.1016/j.foreco.2020.118776. |
[61] |
Manoli G, Bonetti S, Domec J, et al. Tree root systems competing for soil moisture in a 3D soil-plant model[J]. Advances Water Resources, 2014, 66: 32-42.
doi: 10.1016/j.advwatres.2014.01.006 |
[62] |
Yang Y, Guan H, Hutson J L, et al. Examination and parameterization of the root water uptake model from stem water potential and sap flow measurements[J]. Hydrological Processes, 2013, 27: 2857-2863.
doi: 10.1002/hyp.v27.20 |
[63] |
Peters A. Modified conceptual model for compensated root water uptake: A simulation study[J]. Journal of Hydrology, 2016, 534: 1-10.
doi: 10.1016/j.jhydrol.2015.12.047 |
[64] |
Bouda M, Saiers J E. Dynamic effects of root system architecture improve root water uptake in 1-D process-based soil-root hydrodynamics[J]. Advances Water Resources, 2017, 110: 319-334.
doi: 10.1016/j.advwatres.2017.10.018 |
[65] | 丁永建. 中国寒旱区地表关键要素监测科学报告[M]. 北京: 气象出版社, 2015. |
[ Ding Yongjian. Scientific report on monitoring key factors of surface in cold and arid regions of China[M]. Beijing: China Meteorological Press, 2015. ] | |
[66] | Gao B, Qin Y, Wang Y, et al. Modeling ecohydrological processes and spatial patterns in the upper Heihe Basin in China[J]. Forests, 2016, 7(1): 10, doi: 10.3390/f7010010. |
[67] |
Paschalis A, Katul, Fatichi S, et al. Matching ecohydrological processes and scales of banded vegetation patterns in semiarid catchments[J]. Water Resources Research, 2016, 52: 2259-2278.
doi: 10.1002/wrcr.v52.3 |
[68] |
Tang G, Carroll R W H, Lutz A, et al. Regulation of precipitation-associated vegetation dynamics on catchment water balance in a semiarid and arid mountainous watershed[J]. Ecohydrology, 2016, 9: 1248-1262.
doi: 10.1002/eco.v9.7 |
[69] | Montaldo N, Oren R. Rhizosphere water content drives hydraulic redistribution: Implications of pore-scale heterogeneity to modeling diurnal transpiration in water-limited ecosystems[J]. Agricultural and Forest Meteorolgy, 2022, 312: 108720, doi: 10.1016/j.agrformet.2021.108720. |
[70] |
Tague C L, Choate J S, Grant G. Parameterizing sub-surface drainage with geology to improve modeling streamflow responses to climate in data limited environments[J]. Hydrology and Earth System Sciences, 2013, 17: 341-354.
doi: 10.5194/hess-17-341-2013 |
[71] |
Liu H, Zhao W, He Z, et al. Soil moisture dynamics across landscape types in an arid inland river basin of northwest China[J]. Hydrological Processes, 2015, 29: 3328-3341.
doi: 10.1002/hyp.v29.15 |
[72] | He Z, Yang J, Du J, et al. Spatial variability of canopy interception in a spruce forest of the semiarid mountain regions of China[J]. Agricultural and Forest Meteorolgy, 2014, 188: 58-63. |
[73] |
Chang X, Zhao W, He Z. Radial pattern of sap flow and response to microclimate and soil moisture in Qinghai spruce (Picea crassifolia) in the upper Heihe River Basin of arid northwestern China[J]. Agricultural and Forest Meteorology, 2014, 187: 14-21.
doi: 10.1016/j.agrformet.2013.11.004 |
[74] |
Chang X, Zhao W, Liu H, et al. Qinghai spruce (Picea crassifolia) forest transpiration and canopy conductance in the upper Heihe River Basin of arid northwestern China[J]. Agricultural and Forest Meteorology, 2014, 198-199: 209-220.
doi: 10.1016/j.agrformet.2014.08.015 |
[75] |
Chang X, Zhao W, Liu B, et al. Can forest water yields be increased with increased precipitation in a Qinghai spruce forest in arid northwestern China?[J]. Agricultural and Forest Meteorology, 2017, 247: 139-150.
doi: 10.1016/j.agrformet.2017.07.019 |
[76] |
Du J, He Z, Piatek K B, et al. Interacting effects of temperature and precipitation on climatic sensitivity of spring vegetation green-up in arid mountains of China[J]. Agricultural and Forest Meteorology, 2019, 269-270: 71-77.
doi: 10.1016/j.agrformet.2019.02.008 |
[77] |
Tian Q, He Z, Xiao S, et al. Effects of artificial warming on stem radial changes in Qinghai spruce saplings in the Qilian Mountains of China[J]. Dendrochronologia, 2019, 55: 110-118.
doi: 10.1016/j.dendro.2019.04.009 |
[78] | Xu H, Zhao C, Wang X. Spatiotemporal differentiation of the terrestrial gross primary production response to climate constraints in a dryland mountain ecosystem of northwestern China[J]. Agricultural and Forest Meteorology, 2019, 276-277: 107628, doi: 10.1016/j.agrformet.2019.107628. |
[79] | Wang B, Yu P, Yu Y, et al. Effects of canopy position on climate-growth relationships of Qinghai spruce in the central Qilian Mountains, northwestern China[J]. Dendrochronologia, 2020, 64: 125756, doi: 10.1016/j.dendro.2020.125756. |
[80] |
Du J, He Z, Chen L, et al. Impact of climate change on alpine plant community in Qilian Mountains of China[J]. International Journal of Biometeorology, 2021, 65: 1849-1858.
doi: 10.1007/s00484-021-02141-w pmid: 33974125 |
[1] | 康立民, 滕心如, 车佳航, 怀保娟. 昆仑山北坡区域积雪时空变化特征[J]. 干旱区地理, 2024, 47(9): 1462-1471. |
[2] | 王南, 刘泽轩, 郑江华, 仲涛, 孟乘枫. 天山冰湖分布时空特征及驱动力分析[J]. 干旱区地理, 2024, 47(9): 1472-1481. |
[3] | 超宝, 赵媛媛, 武海岩, 李媛, 苏宁. 2000—2020年蒙古高原生态系统服务及其对气候因子的响应[J]. 干旱区地理, 2024, 47(9): 1577-1586. |
[4] | 夏婷婷, 薛璇, 王灏伟, 徐文哲, 盛紫怡, 汪洋. 昆仑山北坡陆地水储量变化及其驱动因素分析[J]. 干旱区地理, 2024, 47(8): 1292-1303. |
[5] | 朱成刚, 陈亚宁, 张明军, 车彦军, 孙美平, 赵锐锋, 汪洋, 刘玉婷. 昆仑山北坡水资源科学考察初报[J]. 干旱区地理, 2024, 47(7): 1097-1105. |
[6] | 张晶, 马龙, 刘廷玺, 孙柏林, 乔子戌. 基于贺兰山青海云杉(Picea crassifolia)树轮对过去202 a最低气温的重建[J]. 干旱区地理, 2024, 47(6): 909-921. |
[7] | 樊静, 申彦波, 常蕊. 气候变化对太阳能资源评估典型气象年选取的影响[J]. 干旱区地理, 2024, 47(6): 922-931. |
[8] | 利辉, 刘铁军, 王少慧, 刘东伟. 2001—2021年内蒙古荒漠草原水分利用效率时空变化特征及影响因素研究[J]. 干旱区地理, 2024, 47(6): 993-1003. |
[9] | 向燕芸, 王弋, 陈亚宁, 张齐飞, 张玉杰. 基于CMIP6模式的叶尔羌河流域未来水文干旱风险预估[J]. 干旱区地理, 2024, 47(5): 798-809. |
[10] | 赵明杰, 王宁练, 石晨烈, 侯靖琪. 2000—2020年中亚大型湖泊湖冰物候时空变化[J]. 干旱区地理, 2024, 47(4): 561-575. |
[11] | 王淑芝, 温得平. 青藏高原大通河流域径流变化归因分析[J]. 干旱区地理, 2024, 47(2): 203-213. |
[12] | 陈丽花, 车彦军, 曹昀, 张明军, 谷来磊, 吴佳康, 吕卫卫. 东昆仑鲸鱼湖流域冰川、湖泊对气候变化的响应[J]. 干旱区地理, 2024, 47(10): 1640-1650. |
[13] | 孙金容, 李兴, 魏敬铤. 近40 a流域气候变化与人类活动双重驱动下乌梁素海面积变化特征研究[J]. 干旱区地理, 2024, 47(10): 1688-1699. |
[14] | 隋露, 闫志明, 李开放, 何佩恩, 马英杰, 张汝萃. 人类活动及气候变化影响下伊犁河谷生境质量预测研究[J]. 干旱区地理, 2024, 47(1): 104-116. |
[15] | 田昊玮, 陈伏龙, 龙爱华, 刘静, 海洋. 博尔塔拉河源流区径流对气候变化的响应及预测[J]. 干旱区地理, 2023, 46(9): 1432-1442. |
|