[1] |
Latrubesse E M, Arima E Y, Dunne T, et al. Damming the rivers of the Amazon Basin[J]. Nature, 2017, 546(7658): 363-369.
|
[2] |
Liu B, Zou X, Yi S, et al. Identifying and separating climate- and human-driven water storage anomalies using GRACE satellite data[J]. Remote Sensing of Environment, 2021, 263: 112559, doi: 10.1016/j.rse.2021.112559.
|
[3] |
Felfelani F, Wada Y, Longuevergne L. Natural and human-induced terrestrial water storage change: A global analysis using hydrological models and GRACE[J]. Journal of Hydrology, 2017, 553: 105-118.
|
[4] |
Huang Y, Salama M, Krol M, et al. Estimation of human-induced changes in terrestrial water storage through integration of GRACE satellite detection and hydrological modeling: A case study of the Yangtze River Basin[J]. Water Resources Research, 2015, 51(10): 8494-8516.
|
[5] |
吕美霞, 马柱国, 李明星. 气候变化、植被改变及人类用水与黄河流域水循环的研究进展[J]. 大气科学学报, 2023, 46(6): 801-812.
|
|
[Lü Meixia, Ma Zhuguo, Li Mingxing. A review on the changing water cycle of the Yellow River Basin under changes in climate, vegetation, and human water use[J]. Transactions of Atmospheric Sciences, 2023, 46(6): 801-812. ]
|
[6] |
Reager J T, Thomas B F, Famiglietti J S. River basin flood potential inferred using GRACE gravity observations at several months lead time[J]. Nature Geoscience, 2014, 7(8): 588-592.
|
[7] |
MacDonald A, Bonsor H, Ahmed K, et al. Groundwater quality and depletion in the Indo-Gangetic Basin mapped from in situ observations[J]. Nature Geoscience, 2016, 9(10): 762-766.
doi: 10.1038/NGEO2791
|
[8] |
Syed T, Famiglietti J, Rodell M, et al. Analysis of terrestrial water storage changes from GRACE and GLDAS[J]. Water Resources Research, 2008, 44(2): W02433, doi: 10.1029/2006WR005779.
|
[9] |
Long D, Yang W, Scanlon B, et al. South-to-North Water Diversion stabilizing Beijing’s groundwater levels[J]. Nature Communication, 2020, 11(1): 3665, doi: 10.1038/s41467-020-17428-6.
|
[10] |
Pan Y, Zhang C, Gong H, et al. Detection of human-induced evapotranspiration using GRACE satellite observations in the Haihe River Basin of China[J]. Geophysical Research Letters, 2017, 44(1): 190-199.
|
[11] |
Karesdotter E, Destouni G, Ghajarnia N, et al. Distinguishing direct human-driven effects on the global terrestrial water cycle[J]. Earths Future, 2022, 10(8): e2022EF002848, doi: 10.1029/2022EF002848.
|
[12] |
Scanlon B, Zhang Z, Save H. Global models underestimate large decadal declining and rising water storage trends relative to GRACE satellite data[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(6): 1080-1089.
doi: 10.1073/pnas.1704665115
pmid: 29358394
|
[13] |
Humphrey V, Gudmundsson L. GRACE-REC: A reconstruction of climate-driven water storage changes over the last century[J]. Earth System Science Data, 2019, 11(3): 1153-1170.
doi: 10.5194/essd-11-1153-2019
|
[14] |
Humphrey V, Gudmundsson L, Seneviratne S I. Global reconstruction of climate-driven subdecadal water storage variability[J]. Geophysical Research Letters, 2017, 44(5): 2300-2309.
|
[15] |
Qi W, Liu J, Chen D. Evaluations and improvements of GLDAS2.0 and GLDAS2.1 forcing data’s applicability for basin scale hydrological simulations in the Tibetan Plateau[J]. Journal of Geophysical Research-Atmospheres, 2018, 123(23): 13128-13148.
|
[16] |
成硕, 李艳忠, 星寅聪, 等. 遥感降水产品对黄河源区水文干旱特征的模拟性能分析[J]. 干旱区地理, 2023, 46(7): 1063-1072.
doi: 10.12118/j.issn.1000-6060.2022.631
|
|
[Cheng Shuo, Li Yanzhong, Xing Yincong, et al. Simulation performance of remote sensing precipitation products on hydrological drought characteristics in the source region of the Yellow River[J]. Arid Land Geography, 2023, 46(7): 1063-1072. ]
doi: 10.12118/j.issn.1000-6060.2022.631
|
[17] |
卓静, 胡皓, 何慧娟, 等. 陕北黄土高原生态脆弱性时空变异及驱动因素分析[J]. 干旱区地理, 2023, 46(11): 1768-1777.
doi: 10.12118/j.issn.1000-6060.2023.027
|
|
[Zhuo Jing, Hu Hao, He Huijuan, et al. Spatiotemporal variation and driving factors of ecological vulnerability in the Loess Plateau of northern Shaanxi[J]. Arid Land Geography, 2023, 46(11): 1768-1777. ]
doi: 10.12118/j.issn.1000-6060.2023.027
|
[18] |
李海生. 黄河流域生态环境问题系统识别与展望[J]. 环境科学研究, 2024, 37(1): 1-10.
|
|
[Li Haisheng. Systematic identification and prospect of eco-environmental problems in the Yellow River Basin[J]. Research of Environmental Sciences, 2024, 37(1): 1-10. ]
|
[19] |
张岚, 孙文科. 重力卫星 GRACE Mascon 产品的应用研究进展与展望[J]. 地球与行星物理论评, 2022, 53(1): 35-52.
|
|
[Zhang Lan, Sun Wenke. Progress and prospect of GRACE Mascon product and its application[J]. Reviews of Geophysiscs and Planetary Physics, 2022, 53(1): 35-52. ]
|
[20] |
Zhang W X, Zhou T J, Wu P L. Anthropogenic amplification of precipitation variability over the past century[J]. Science, 2024, 385:427-432.
doi: 10.1126/science.adp0212
pmid: 39052805
|
[21] |
Zhang W X, Furtado K, Wu P L, et al. Increasing precipitation variability on daily-to-multiyear time scales in a warmer world[J]. Science Advances, 2021, 7(31): eabf8021, doi: 10.1126/sciadv.abf8021.
|
[22] |
韩双宝, 李甫成, 王赛, 等. 黄河流域地下水资源状况及其生态环境问题[J]. 中国地质, 2021, 48(4): 1001-1019.
|
|
[Han Shuangbao, Li Fucheng, Wang Sai, et al. Groundwater resource and eco-environmental problem of the Yellow River Basin[J]. Geology of China, 2021, 48(4): 1001-1019. ]
|