CollectHomepage AdvertisementContact usMessage

Arid Land Geography ›› 2024, Vol. 47 ›› Issue (5): 785-797.doi: 10.12118/j.issn.1000-6060.2023.514

• Climatology and Hydrology • Previous Articles     Next Articles

Interdecadal changes and risk assessment of drought events in Ningxia from 1961 to 2020

WANG Dai1,2(), CUI Yang1,3(), WANG Suyan1,2, ZHANG Wen1,2   

  1. 1. Key Laboratory for Meteorological Disaster Monitoring and Early Warning and Risk Management of Characteristic Agriculture in Arid Regions, China Meteorological Administration, Yinchuan 750002, Ningxia, China
    2. Ningxia Hui Autonomous Region Climate Center, Yinchuan 750002, Ningxia, China
    3. The Institute of Meteorological Science of Ningxia Hui Autonomous Region, Yinchuan 750002, Ningxia, China
  • Received:2023-09-19 Revised:2023-11-20 Online:2024-05-25 Published:2024-05-30
  • Contact: CUI Yang E-mail:wangd123@126.com;cuiyang@cma.gov.cn

Abstract:

Utilizing meteorological observation data from 20 national meteorological stations in Ningxia, China, spanning from 1961 to 2020, along with socioeconomic statistical data from the past four decades, this study established indicators for drought process events in Ningxia. Subsequently, it developed an interdecadal drought disaster risk assessment model in line with disaster risk assessment theory. The study analyzed the interdecadal variation characteristics and regional differences of drought events and the associated risks to major crops in Ningxia, aiming to identify the factors influencing regional crop interdecadal risk changes. The findings are as follows: (1) The cumulative effect, duration, and intensity indicators of drought events in Ningxia over the past six decades exhibit distinct interdecadal variation characteristics, with notable shifts in trends and mean values in the central northern region and southern mountainous areas around 1980 and 2010, respectively. Additionally, the spatial distribution of high-value areas for drought event and disaster risk indicators demonstrated a pattern of initial increase, followed by a decrease, another increase, and a final decrease over the decades. (2) Since the 1980s, the risk levels of corn drought disasters in Ningxia’s regions, in descending order, are the Yellow River irrigation area, the central arid zone, and the southern mountainous area. Influenced by the continuous expansion of the corn planting area and the growth of the gross domestic product (GDP), the drought risk levels in the central and southern regions have seen an interdecadal increase. Moreover, the increase amplitude in wheat drought disaster risk levels, in descending order, are the central arid zone, the southern mountainous area, and the Yellow River irrigation area. The primary reasons for the heightened drought risk in parts of the central arid zone during the 2010s include the confluence of high disaster risk, wheat planting area, and GDP. (3) Given the future challenges of water scarcity and inadequate irrigation in Ningxia’s central and southern regions, it is advisable to adopt measures such as enhancing artificial rainfall capabilities, developing new crop varieties, and encouraging farmland returning to forestry and grassland or migration to mitigate the disaster risk. These strategies aim to reduce the induced disaster risk, disaster bearing body exposure and pregnant environment vulnerability, thereby lowering the drought disaster risk levels for local corn and wheat production. The insights from this analysis offer a scientific foundation for the region’s strategic agricultural planning, efficient water use, drought mitigation, and disaster response efforts, contributing to the ecological protection and high-quality development initiatives in the Yellow River Basin of Ningxia.

Key words: drought events, interdecadal changes, disaster risk assessment, Ningxia