[1] |
王文静, 延军平, 刘永林, 等. 基于综合气象干旱指数的海河流域干旱特征分析[J]. 干旱区地理, 2016, 39(2): 336-344.
|
|
[ Wang Wenjing, Yan Junping, Liu Yonglin, et al. Characteristics of droughts in the Haihe Basin based on meteorological drought composite index[J]. Arid Land Geography, 2016, 39(2): 336-344. ]
|
[2] |
张世喆, 朱秀芳, 刘婷婷, 等. 基于多维Copula的中国干旱特征及危险性分析[J]. 干旱区地理, 2022, 45(2): 333-345.
|
|
[ Zhang Shizhe, Zhu Xiufang, Liu Tingting, et al. Drought characteristics and risk hazard in China based on multidimensional Copula model[J]. Arid Land Geography, 2022, 45(2): 333-345. ]
|
[3] |
Zhang Y, Liu X H, Jiao W Z, et al. A new multi-variable integrated framework for identifying flash drought in the Loess Plateau and Qinling Mountains regions of China[J]. Agricultural Water Management, 2022, 265(C): 107544, doi: 10.1016/j.agat.2022.107544.
doi: 10.1016/j.agat.2022.107544
|
[4] |
袁星, 王钰淼, 张苗, 等. 关于骤旱研究的一些思考[J]. 大气科学学报, 2020, 43(6): 1086-1095.
|
|
[ Yuan Xing, Wang Yumiao, Zhang Miao, et al. A few thoughts on the study of flash drought[J]. Transactions of Atmospheric Sciences, 2020, 43(6): 1086-1095. ]
|
[5] |
Qing Y M, Wang S, Ancell B C, et al. Accelerating flash droughts induced by the joint influence of soil moisture depletion and atmospheric aridity[J]. Nature Communications, 2022, 13(1): 1-10.
doi: 10.1038/s41467-021-27699-2
|
[6] |
Christian J I, Basara J B, Hunt E D, et al. Global distribution, trends, and drivers of flash drought occurrence[J]. Nature Communications, 2021, 12(1): 1-11.
doi: 10.1038/s41467-020-20314-w
|
[7] |
Ford T W, Labosier C F. Meteorological conditions associated with the onset of flash drought in the eastern United States[J]. Agricultural and Forest Meteorology, 2017, 247: 414-423.
doi: 10.1016/j.agrformet.2017.08.031
|
[8] |
Wang L Y, Yuan X, Xie Z H, et al. Increasing flash droughts over China during the recent global warming hiatus[J]. Scientific Reports, 2016, 6(1): 1-8.
doi: 10.1038/s41598-016-0001-8
|
[9] |
Otkin J A, Anderson M C, Hain C, et al. Assessing the evolution of soil moisture and vegetation conditions during the 2012 United States flash drought[J]. Agricultural and Forest Meteorology, 2016, 218: 230-242.
|
[10] |
Nguyen H, Wheeler M C, Otkin J A, et al. Using the evaporative stress index to monitor flash drought in Australia[J]. Environmental Research Letters, 2019, 14(6): 064016, doi: 10.1088/1748-9326/ab2103.
doi: 10.1088/1748-9326/ab2103.
|
[11] |
Mahto S S, Mishra V. Dominance of summer monsoon flash droughts in India[J]. Environmental Research Letters, 2020, 15(10): 104061, doi: 10.1088/1748-9326/abaf1d.
doi: 10.1088/1748-9326/abaf1d
|
[12] |
Yuan X, Ma Z, Pan M, et al. Microwave remote sensing of short-term droughts during crop growing seasons[J]. Geophysical Research Letters, 2015, 42(11): 4394-4401.
doi: 10.1002/grl.v42.11
|
[13] |
Mo K C, Lettenmaier D P. Heat wave flash droughts in decline[J]. Geophysical Research Letters, 2015, 42(8): 2823-2829.
doi: 10.1002/2015GL064018
|
[14] |
Mo K C, Lettenmaier D P. Precipitation deficit flash droughts over the United States[J]. Journal of Hydrometeorology, 2016, 17(4): 1169-1184.
doi: 10.1175/JHM-D-15-0158.1
|
[15] |
Christian J I, Basara J B, Otkin J A, et al. A methodology for flash drought identification: Application of flash drought frequency across the United States[J]. Journal of Hydrometeorology, 2019, 20(5): 833-846.
doi: 10.1175/JHM-D-18-0198.1
|
[16] |
Zhang Y Q, You Q L, Chen C C, et al. Evaluation of downscaled CMIP5 coupled with VIC model for flash drought simulation in a humid subtropical basin, China[J]. Journal of Climate, 2018, 31(3): 1075-1090.
doi: 10.1175/JCLI-D-17-0378.1
|
[17] |
Zhang H Y, Wu C H, Yeh P J F, et al. Global pattern of short-term concurrent hot and dry extremes and its relationship to large-scale climate indices[J]. International Journal of Climatology, 2020, 40(14): 5906-5924.
doi: 10.1002/joc.v40.14
|
[18] |
Zhang H Y, Wu C H, Hu B X. Recent intensification of short-term concurrent hot and dry extremes over the Pearl River Basin, China[J]. International Journal of Climatology, 2019, 39(13): 4924-4937.
doi: 10.1002/joc.v39.13
|
[19] |
徐华, 徐建军, 范伶俐. ENSO多样性研究进展[J]. 热带气象学报, 2019, 35(2): 281-288.
|
|
[ Xu Hua, Xu Jianjun, Fan Lingli. ENSO diversity: A review[J]. Journal of Tropical Meteorology, 2019, 35(2): 281-288. ]
|
[20] |
王婷, 李双双, 延军平, 等. 基于ENSO发展过程的中国夏季降水时空变化特征[J]. 自然资源学报, 2022, 37(3): 803-815.
doi: 10.31497/zrzyxb.20220316
|
|
[ Wang Ting, Li Shuangshuang, Yan Junping, et al. Spatio-temporal variation of summer precipitation in China based on ENSO development process[J]. Journal of Natural Resources, 2022, 37(3): 803-815. ]
doi: 10.31497/zrzyxb.20220316
|
[21] |
吉珍霞, 侯青青, 裴婷婷, 等. 黄土高原植被物候对季节性干旱的敏感性响应[J]. 干旱区地理, 2022, 45(2): 557-565.
|
|
[ Ji Zhenxia, Hou Qingqing, Pei Tingting, et al. Sensitive response of vegetation phenology to seasonal drought in the Loess Plateau[J]. Arid Land Geography, 2022, 45(2): 557-565. ]
|
[22] |
Wang L Y, Yuan X. Two types of flash drought and their connections with seasonal drought[J]. Advances in Atmospheric Sciences, 2018, 35(12): 1478-1490.
doi: 10.1007/s00376-018-8047-0
|
[23] |
He M Z, Kimball J S, Yi Y, et al. Impacts of the 2017 flash drought in the US northern plains informed by satellite-based evapotranspiration and solar-induced fluorescence[J]. Environmental Research Letters, 2019, 14(7): 074019, doi: 10.1088/1748-9326/ab22c3.
doi: 10.1088/1748-9326/ab22c3
|
[24] |
胡鹏飞, 李净, 王丹, 等. 基于MODIS和TRMM数据的黄土高原农业干旱监测[J]. 干旱区地理, 2019, 42(1): 172-179.
|
|
[ Hu Pengfei, Li Jing, Wang Dan, et al. Monitoring agricultural drought in the Loess Plateau using MODIS and TRMM data[J]. Arid Land Geography, 2019, 42(1): 172-179. ]
|
[25] |
杨艳芬, 王兵, 王国梁, 等. 黄土高原生态分区及概况[J]. 生态学报, 2019, 39(20): 7389-7397.
|
|
[ Yang Yanfen, Wang Bing, Wang Guoliang, et al. Ecological regionalization and overview of the Loess Plateau[J]. Acta Ecologica Sinica, 2019, 39(20): 7389-7397. ]
|
[26] |
岳书平, 闫业超, 张树文, 等. 基于ERA5-LAND的中国东北地区近地表土壤冻融状态时空变化特征[J]. 地理学报, 2021, 76(11): 2765-2779.
doi: 10.11821/dlxb202111012
|
|
[ Yue Shuping, Yan Yechao, Zhang Shuwen, et al. Spatiotemporal variations of soil freeze-thaw state in northeast China based on the ERA5-LAND dataset[J]. Acta Geographica Sinica, 2021, 76(11): 2765-2779. ]
doi: 10.11821/dlxb202111012
|
[27] |
安彬, 肖薇薇, 张淑兰, 等. 1960—2017年黄土高原地表温度时空变化特征[J]. 干旱区地理, 2021, 44(3): 778-785.
|
|
[ An Bin, Xiao Weiwei, Zhang Shulan, et al. Spatial and temporal characteristics of surface temperature in the Loess Plateau during 1961—2017[J]. Arid Land Geography, 2021, 44(3): 778-785. ]
|
[28] |
贾丹阳, 熊祯祯, 高岩, 等. 近30 a台特玛湖地区土地利用/土地覆被变化及其影响因素[J]. 干旱区地理, 2021, 44(4): 1022-1031.
|
|
[ Jia Danyang, Xiong Zhenzhen, Gao Yan, et al. Land use/land cover change and influencing factors in the Taitema Lake in the past 30 years[J]. Arid Land Geography, 2021, 44(4): 1022-1031. ]
|
[29] |
杨凯, 胡田田, 王澄海. 青藏高原南、北积雪异常与中国东部夏季降水关系的数值试验研究[J]. 大气科学, 2017, 41(2): 345-356.
|
|
[ Yang Kai, Hu Tiantian, Wang Chenghai. A numerical study on the relationship between the spring-winter snow cover anomalies over the northern and southern Tibetan Plateau and summer precipitation in east China[J]. Atmospheric Sciences, 2017, 41(2): 345-356. ]
|
[30] |
朱玉祥, 丁一汇, 刘海文. 青藏高原冬季积雪影响我国夏季降水的模拟研究[J]. 大气科学, 2009, 33(5): 903-915.
|
|
[ Zhu Yuxiang, Ding Yihui, Liu Haiwen, et al. Simulation of the influence of winter snow depth over the Tibetan Plateau on summer rainfall in China[J]. Atmospheric Sciences, 2009, 33(5): 903-915. ]
|