[1] |
Renner M, Wild M, Schwarz M, et al. Estimating shortwave clear-sky fluxes from hourly global radiation records by quantile regression[J]. Earth and Space Science, 2019, 6(8): 1532-1546.
doi: 10.1029/2019EA000686
|
[2] |
Wang K, Dickinson R E, Ma Q, et al. Measurement methods affect the observed global dimming and brightening[J]. Journal of Climate, 2013, 26(12): 4112-4120.
|
[3] |
Wild M, Folini D, Schär C, et al. The global energy balance from a surface perspective[J]. Climate Dynamics, 2013, 40(11): 3107-3134.
|
[4] |
Liang S, Wang K, Zhang X, et al. Review on estimation of land surface radiation and energy budgets from ground measurement, remote sensing and model simulations[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2010, 3(3): 225-240.
|
[5] |
Zhang X, Liang S, Wild M, et al. Analysis of surface incident shortwave radiation from four satellite products[J]. Remote Sensing of Environment, 2015, 165: 186-202.
|
[6] |
Wild M, Ohmura A, Gilgen H, et al. Validation of general circulation model radiative fluxes using surface observations[J]. Journal of Climate, 1995, 8(5): 1309-1324.
|
[7] |
Beer C, Reichstein M, Tomelleri E, et al. Terrestrial gross carbon dioxide uptake: Global distribution and covariation with climate[J]. Science, 2010, 329(5993): 834-838.
doi: 10.1126/science.1184984
pmid: 20603496
|
[8] |
Wang L, Kisi O, Zounemat-Kermani M, et al. Solar radiation prediction using different techniques: Model evaluation and comparison[J]. Renewable and Sustainable Energy Reviews, 2016, 61: 384-397.
|
[9] |
Liepert B G. Observed reductions of surface solar radiation at sites in the United States and worldwide from 1961 to 1990[J]. Geophysical Research Letters, 2002, 29(10): 61, doi: 10.1029/2002GL014910.
|
[10] |
Xia X. Spatiotemporal changes in sunshine duration and cloud amount as well as their relationship in China during 1954—2005[J]. Journal of Geophysical Research: Atmospheres, 2010, 115(D7): D00K06, doi: 10.1029/2009JD012879.
|
[11] |
Yang S, Wang X L, Wild M. Causes of dimming and brightening in China inferred from homogenized daily clear-sky and all-sky in situ surface solar radiation records (1958—2016)[J]. Journal of Climate, 2019, 32(18): 5901-5913.
|
[12] |
Feng F, Wang K. Determining factors of monthly to decadal variability in surface solar radiation in China: Evidences from current reanalyses[J]. Journal of Geophysical Research: Atmospheres, 2019, 124(16): 9161-9182.
|
[13] |
Tang W, Yang K, Qin J, et al. A revisit to decadal change of aerosol optical depth and its impact on global radiation over China[J]. Atmospheric Environment, 2017, 150: 106-115.
|
[14] |
Wang C, Zhang Z, Tian W. Factors affecting the surface radiation trends over China between 1960 and 2000[J]. Atmospheric Environment, 2011, 45(14): 2379-2385.
|
[15] |
Wang Z, Zhang M, Wang L, et al. Long-term evolution of clear sky surface solar radiation and its driving factors over east Asia[J]. Atmospheric Environment, 2021, 262: 118661, doi: 10.1016/j.atmosenv.2021.118661.
|
[16] |
Mckenzie R L, Aucamp P J, Bais A F, et al. Changes in biologically-active ultraviolet radiation reaching the earth’s surface[J]. Photochemical & Photobiological Sciences, 2007, 6(3): 218-231.
|
[17] |
Zhou Y, Liu Y, Wang D, et al. A review on global solar radiation prediction with machine learning models in a comprehensive perspective[J]. Energy Conversion and Management, 2021, 235: 113960, doi: 10.1016/j.enconman.2021.113960.
|
[18] |
Zhou Z, Lin A, Wang L, et al. Trends in downward surface shortwave radiation from multi-source data over China during 1984—2015[J]. International Journal of Climatology, 2020, 40(7): 3467-3485.
|
[19] |
张连成, 胡列群, 李帅, 等. 基于RS的昆仑山区夏季雪线高程变化及其影响因素分析[J]. 冰川冻土, 2019, 41(3): 546-553.
doi: 10.7522/j.issn.1000-0240.2019.0024
|
|
[Zhang Liancheng, Hu Liequn, Li Shuai, et al. Analyses of variation of summer snowline elevation and its influencing factors in the Kunlun Mountains based on RS, 2001—2015[J]. Journal of Glaciology and Geocryology, 2019, 41(3): 546-553.]
doi: 10.7522/j.issn.1000-0240.2019.0024
|
[20] |
许有鹏, 高蕴珏, 杨戍. 昆仑山北坡河流水文水资源特征研究[J]. 地理科学, 1994, 14(4): 338-346, 390.
|
|
[Xu Youpeng, Gao Yunjue, Yang Shu. Approach to water resource characteristics of rivers in north slope area of the Kunlun Mountains[J]. Scientia Geographica Sinica, 1994, 14(4): 338-346, 390.]
doi: 10.13249/j.cnki.sgs.1994.04.338
|
[21] |
Farinotti D, Immerzeel W W, de Kok R J, et al. Manifestations and mechanisms of the Karakoram glacier anomaly[J]. Nature Geoscience, 2020, 13(1): 8-16.
doi: 10.1038/s41561-019-0513-5
pmid: 31915463
|
[22] |
Boilley A, Wald L. Comparison between meteorological re-analyses from ERA-Interim and MERRA and measurements of daily solar irradiation at surface[J]. Renewable Energy, 2015, 75: 135-143.
|
[23] |
Yang D, Bright J M. Worldwide validation of 8 satellite-derived and reanalysis solar radiation products: A preliminary evaluation and overall metrics for hourly data over 27 years[J]. Solar Energy, 2020, 210: 3-19.
|
[24] |
Feng F, Wang K. Merging ground-based sunshine duration observations with satellite cloud and aerosol retrievals to produce high-resolution long-term surface solar radiation over China[J]. Earth System Science Data, 2021, 13(3): 907-922.
|
[25] |
Tang W, Yang K, Qin J, et al. A 16-year dataset (2000—2015) of high-resolution (3 h, 10 km) global surface solar radiation[J]. Earth System Science Data, 2019, 11(4): 1905-1915.
|
[26] |
He J, Yang K, Tang W, et al. The first high-resolution meteorological forcing dataset for land process studies over China[J]. Scientific Data, 2020, 7(1): 25, doi: 10.1038/s41597-020-0369-y.
pmid: 31964891
|
[27] |
王劲峰, 徐成东. 地理探测器: 原理与展望[J]. 地理学报, 2017, 72(1): 116-134.
doi: 10.11821/dlxb201701010
|
|
[Wang Jinfeng, Xu Chengdong. Geodetector: Principle and prospective[J]. Acta Geographica Sinica, 2017, 72(1): 116-134.]
doi: 10.11821/dlxb201701010
|
[28] |
胡畔, 陈波, 史培军. 中国暴雨洪涝灾情时空格局及影响因素[J]. 地理学报, 2021, 76(5): 1148-1162.
doi: 10.11821/dlxb202105008
|
|
[Hu Pan, Chen Bo, Shi Peijun. Spatiotemporal patterns and influencing factors of rainstorm-induced flood disasters in China[J]. Acta Geographica Sinica, 2021, 76(5): 1148-1162.]
doi: 10.11821/dlxb202105008
|
[29] |
田浩, 刘琳, 张正勇, 等. 2001—2020年中国地表温度时空分异及归因分析[J]. 地理学报, 2022, 77(7): 1713-1729.
doi: 10.11821/dlxb202207010
|
|
[Tian Hao, Liu Lin, Zhang Zhengyong, et al. Spatiotemporal diversity and attribution analysis of land surface temperature in China from 2001 to 2020[J]. Acta Geographica Sinica, 2022, 77(7): 1713-1729.]
doi: 10.11821/dlxb202207010
|
[30] |
张淑花, 李新功, 李奇虎, 等. 提孜那甫河流域地表太阳辐射估算及其影响因素分析[J]. 干旱区地理, 2022, 45(3): 734-745.
|
|
[Zhang Shuhua, Li Xingong, Li Qihu, et al. Estimation of temporal and spatial distribution of solar radiation over Tizinafu River Basin and analysis of its influencing factors[J]. Arid Land Geography, 2022, 45(3): 734-745.]
|
[31] |
张星星, 吕宁, 姚凌, 等. ECMWF地表太阳辐射数据在我国的误差及成因分析[J]. 地球信息科学学报, 2018, 20(2): 254-267.
doi: 10.12082/dqxxkx.2018.170381
|
|
[Zhang Xingxing, Lü Ning, Yao Ling, et al. Error analysis of ECMWF surface solar radiation data in China[J]. Journal of Geo-information Science, 2018, 20(2): 254-267.]
|
[32] |
张仪辉, 梁康, 刘昌明, 等. 尼洋河流域极端气候时空分布特征及其可能成因[J]. 地理研究, 2022, 41(10): 2808-2820.
doi: 10.11821/dlyj020211104
|
|
[Zhang Yihui, Liang Kang, Liu Changming, et al. Spatio-temporal distribution characteristics and possible causes of extreme climate in the Niyang River Basin[J]. Geographical Research, 2022, 41(10): 2808-2820.]
|
[33] |
You Q, Sanchez-Lorenzo A, Wild M, et al. Decadal variation of surface solar radiation in the Tibetan Plateau from observations, reanalysis and model simulations[J]. Climate Dynamics, 2013, 40(7): 2073-2086.
|
[34] |
郭晓宁, 杨延华, 马元仓, 等. 柴达木盆地春季沙尘暴变化特征分析[J]. 干旱区资源与环境, 2018, 32(8): 107-113.
|
|
[Guo Xiaoning, Yang Yanhua, Ma Yuancang, et al. The characteristics of the sandstorm weather in Qaidam Basin[J]. Journal of Arid Land Resources and Environment, 2018, 32(8): 107-113.]
|
[35] |
Wang Y, Wild M. A new look at solar dimming and brightening in China[J]. Geophysical Research Letters, 2016, 43(22): 11777-11785.
|
[36] |
Tang W, Yang K, Qin J, et al. Solar radiation trend across China in recent decades: A revisit with quality-controlled data[J]. Atmospheric Chemistry and Physics, 2011, 11(1): 393-406.
|
[37] |
Yang K, Ding B, Qin J, et al. Can aerosol loading explain the solar dimming over the Tibetan Plateau?[J]. Geophysical Research Letters, 2012, 39(20): L20710, doi: 10.1029/2012GL053733.
|
[38] |
Yu L, Zhang M, Wang L, et al. Variability of surface solar radiation under clear skies over Qinghai-Tibet Plateau: Role of aerosols and water vapor[J]. Atmospheric Environment, 2022, 287: 119286, doi: 10.1016/j.atmosenv.2022.119286.
|
[39] |
Jia R, Liu Y, Chen B, et al. Source and transportation of summer dust over the Tibetan Plateau[J]. Atmospheric Environment, 2015, 123: 210-219.
|
[40] |
周秀骥, 李维亮, 陈隆勋, 等. 青藏高原地区大气臭氧变化的研究[J]. 气象学报, 2004, 62(5): 513-527.
|
|
[Zhou Xiuji, Li Weiliang, Chen Longxun, et al. Study of ozone change over Tibetan Plateau[J]. Acta Meteorologica Sinica, 2004, 62(5): 513-527.]
|