[1] |
Legg S. IPCC, 2021: Climate change 2021: The physical science basis[J]. Interaction, 2021, 49(4): 44-45.
|
[2] |
孙颖. 人类活动对气候系统的影响——解读IPCC第六次评估报告第一工作组报告第三章[J]. 大气科学学报, 2021, 44(5): 654-657.
|
|
[Sun Ying. lmpact of humanactivities on climate system: An interpretation of Chapter Ⅲ of WG I report of IPCC AR6[J]. Transactions of Atmospheric Sciences, 2021, 44(5): 654-657.]
|
[3] |
Thackeray C W, Deangelis A M, Hall A, et al. On the connection between global hydrologic sensitivity and regional wet extremes[J]. Geophysical Research Letters, 2018, 45(20): 11343-11351.
|
[4] |
Donat M G, Lowry A L, Alexander L V, et al. More extreme precipitation in the world’s dry and wet regions[J]. Nature Climate Change, 2016, 6(5): 508-513.
|
[5] |
Pi Y Y, Yu Y, Zhang Y Q, et al. Extreme temperature events during 1960—2017 in the arid region of northwest China: Spatiotemporal dynamics and associated large-scale atmospheric circulation[J]. Sustainability, 2020, 12(3): 1198, doi: 10.3390/su12031198.
|
[6] |
Wang Y J, Zhou B T, Qin D H, et al. Changes in mean and extreme temperature and precipitation over the arid region of northwestern China: Observation and projection[J]. Advances in Atmospheric Sciences, 2017, 34: 289-305.
|
[7] |
曾颖婷, 陆尔. 1961—2010年我国夏季总降水和极端降水的变化[J]. 气候变化研究进展, 2015, 11(2): 79-85.
|
|
[Zeng Yingting, Lu Er. Changes of summer rainfall and extreme precipitation during 1961—2010 in China[J]. Climate Change Research, 2015, 11(2): 79-85.]
|
[8] |
陈效逑, 刘立, 尉杨平. 1961—2005年黄河流域极端气候事件变化趋势[J]. 人民黄河, 2011, 33(5): 3-5.
|
|
[Chen Xiaoqiu, Liu Li, Wei Yangping. Variation trend of extreme climate events of the Yellow River Basin in 1961—2005 period[J]. Yellow River, 2011, 33(5): 3-5.]
|
[9] |
任宗萍, 马勇勇, 王友胜, 等. 无定河流域不同地貌区径流变化归因分析[J]. 生态学报, 2019, 39(12): 4309-4318.
|
|
[Ren Zongping, Ma Yongyong, Wang Yousheng, et al. Runoff changes and attribution analysis in tributaries of different geomorphic regions in Wuding River Basin[J]. Acta Ecologica Sinica, 2019, 39(12): 4309-4318.]
|
[10] |
党维勤, 郝鲁东, 高健健, 等. 基于“7·26”暴雨洪水灾害的淤地坝作用分析与思考[J]. 中国水利, 2019(8): 52-55.
|
|
[Dang Weiqin, Hao Ludong, Gao Jianjian, et al. Roles of silt retention dam in rainstorm flood disaster on July 26[J]. China Water Resources, 2019(8): 52-55.]
|
[11] |
Ahmed K, Sachindra D, Shahid S, et al. Multi-model ensemble predictions of precipitation and temperature using machine learning algorithms[J]. Atmospheric Research, 2020, 236: 104806, doi: 10.1016/j.atmosres.2019.104806.
|
[12] |
Yang T A, Liu J L, Chen Q Y. Assessment of plain river ecosystem function based on improved gray system model and analytic hierarchy process for the Fuyang River, Haihe River Basin, China[J]. Ecological Modelling, 2013, 268: 37-47.
|
[13] |
Corchado J M, Lees B. A hybrid case-based model for forecasting[J]. Applied Artificial Intelligence, 2001, 15(2): 105-127.
|
[14] |
杨梅焕, 王钰尧, 王涛, 等. 西北干旱区极端降水时空变化特征及驱动因素[J]. 西安理工大学学报, 2023, 39(3): 393-403.
|
|
[Yang Meihuan, Wang Yuyao, Wang Tao, et al. Spatiotemporal variation characteristics and driving factors of extreme precipitation in arid region of northwest China[J]. Journal of Xi’an University of Technology, 2023, 39(3): 393-403.]
|
[15] |
李军龙, 张剑, 张丛, 等. 气象要素空间插值方法的比较分析[J]. 草业科学, 2006, 23(8): 6-11.
|
|
[Li Junlong, Zhang Jian, Zhang Cong, et al. Analyze and compare the spatial interpolation methods for climate factor[J]. Pratacultural Science, 2006, 23(8): 6-11.]
|
[16] |
林忠辉, 莫兴国, 李宏轩, 等. 中国陆地区域气象要素的空间插值[J]. 地理学报, 2002, 57(1): 47-56.
|
|
[Lin Zhonghui, Mo Xingguo, Li Hongxuan, et al. Comparison of three spatial interpolation methods for climate variables in China[J]. Acta Geographica Sinica, 2002, 57(1): 47-56.]
doi: 10.11821/xb200201006
|
[17] |
郭飞. 基于WRF的城市热岛效应高分辨率评估方法[J]. 土木建筑与环境工程, 2017, 39(1): 13-19.
|
|
[Guo Fei. Assessment method of urban heat island high resolution based on WRF[J]. Journal of Civil and Environmental Engineering, 2017, 39(1): 13-19.]
|
[18] |
侯嘉琪. 基于WRF模式的中国西北地区未来气候变化预测分析[D]. 武汉: 华中农业大学, 2023.
|
|
[Hou Jiaqi. Prediction of future climate change in northwest China based on WRF model[D]. Wuhan: Huazhong Agricultural University, 2023.]
|
[19] |
Skamarock W C, Klemp J B, Dudhia J, et al. A description of the advanced research WRF Version 3[C]// NCAR/TN 475+STR. NCAR Technical Note. Colorado: Mesoscale and Microscale Meteorology Division National Center for Atmospheric Research, 2009.
|
[20] |
Alexander L, Herold N. ClimPACT2[M]. Sydney: The University of New South Wales, 2016: 1-46.
|
[21] |
赵雪岩. 无定河流域土地利用变化方式及对径流的影响研究[D]. 咸阳: 西北农林科技大学, 2023.
|
|
[Zhao Xueyan. Study on land use change and its impact on runoff in Wuding River Basin[D]. Xianyang: Northwest A & F University, 2023.]
|
[22] |
马伟东, 刘峰贵, 周强, 等. 1961—2017年青藏高原极端降水特征分析[J]. 自然资源学报, 2020, 35(12): 3039-3050.
doi: 10.31497/zrzyxb.20201218
|
|
[Ma Weidong, Liu Fenggui, Zhou Qiang, et al. Characteristics of extreme precipitation over the Qinghai-Tibet Plateau from 1961 to 2017[J]. Journal of Natural Resources, 2020, 35(12): 3039-3050.]
doi: 10.31497/zrzyxb.20201218
|
[23] |
李胜利, 巩在武, 石振彬. 近50年来山东省极端降水指数变化特征分析[J]. 水土保持研究, 2016, 23(4): 120-127.
|
|
[Li Shengli, Gong Zaiwu, Shi Zhenbin. Characteristics of change in extreme precipitation indices in Shandong Province in recent 50 years[J]. Research of Soil and Water Conservation, 2016, 23(4): 120-127.]
|
[24] |
王倩之, 刘凯, 汪明. NEX-GDDP降尺度数据对中国极端降水指数模拟能力的评估[J]. 气候变化研究进展, 2022, 18(1): 31-43.
|
|
[Wang Qianzhi, Liu Kai, Wang Ming. Evaluation of extreme precipitation indices performance based on NEX-GDDP downscaling data over China[J]. Climate Change Research, 2022, 18(1): 31-43.]
|
[25] |
李宛鸿, 徐影. CMIP6模式对青藏高原极端气温指数模拟能力评估及预估[J]. 高原气象, 2023, 42(2): 305-319.
doi: 10.7522/j.issn.1000-0534.2022.00032
|
|
[Li Wanhong, Xu Ying. Evaluation and projection of extreme temperature indices over the Qinghai-Xizang Plateau by CMlP6 models[J]. Plateau Meteorology, 2023, 42(2): 305-319.]
doi: 10.7522/j.issn.1000-0534.2022.00032
|
[26] |
Vourlioti P, Mamouka T, Agrafiotis A, et al. Medicane ianos: 4D-var data assimilation of surface and satellite observations into the numerical weather prediction model WRF[J]. Atmosphere, 2022, 13(10): 1683, doi: 10.3390/atmos13101683.
|
[27] |
Fu Y Y, Zhou Z X, Li J J, et al. Impact of aerosols on NPP in basins: Case study of WRF-solar in the Jinghe River Basin[J]. Remote Sensing, 2023, 15(7): 1908, doi: 10.3390/RS15071908.
|
[28] |
Shirali E, Nikbakht S A, Fathian H, et al. Evaluation of WRF and artificial intelligence models in short-term rainfall, temperature and flood forecast (case study)[J]. Journal of Earth System Science, 2020, 129(1): 1-16.
|
[29] |
Delfino R J, Bagtasa G, Hodges K, et al. Sensitivity of simulating Typhoon Haiyan (2013) using WRF: The role of cumulus convection, surface flux parameterizations, spectral nudging, and initial and boundary conditions[J]. Natural Hazards and Earth System Sciences, 2022, 22(10): 3285-3307.
|
[30] |
田磊. 变化环境下黄土高原水文气候要素数值模拟及未来预测[D]. 咸阳: 西北农林科技大学, 2019.
|
|
[Tian Lei. Numerical simulation and future prediction of hydrological and climatic factors in the Loess Plateau under changing environment[D]. Xianyang: Northwest A & F University, 2019.]
|
[31] |
方利, 王文杰, 蒋卫国, 等. 2000—2014年黑龙江流域(中国)植被覆盖时空变化及其对气候变化的响应[J]. 地理科学, 2017, 37(11): 1745-1754.
doi: 10.13249/j.cnki.sgs.2017.11.017
|
|
[Fang Li, Wang Wenjie, Jiang Weiguo, et al. Spatio-temporal variations of vegetation cover and its responses to climate change in the Heilongjiang Basin of China from 2000 to 2014[J]. Scientia Geographica Sinica, 2017, 37(11): 1745-1754.]
doi: 10.13249/j.cnki.sgs.2017.11.017
|
[32] |
李双双, 孔锋, 韩鹭, 等. 陕北黄土高原区极端降水时空变化特征及其影响因素[J]. 地理研究, 2020, 39(1): 140-151.
doi: 10.11821/dlyj020181067
|
|
[Li Shuangshuang, Kong Feng, Han Lu, et al. Spatiotemporal variability of extreme precipitation and influencing factors on the Loess Plateau in northern Shaanxi Province[J]. Geographical Research, 2020, 39(1): 140-151.]
|
[33] |
杨维涛, 孙建国, 康永泰, 等. 黄土高原地区极端气候指数时空变化[J]. 干旱区地理, 2020, 43(6): 1456-1466.
|
|
[Yang Weitao, Sun Jianguo, Kang Yongtai, et al. Temporal and spatial changes of extreme weather indices in the Loess Plateau[J]. Arid Land Geography, 2020, 43(6): 1456-1466.]
doi: 10.12118/j.issn.1000-6060.2020.06.06
|
[34] |
黎珩, 朱冰冰, 边熇, 等. 1970—2020年黄土高原水蚀风蚀交错区极端降水时空变化研究及驱动因素分析[J]. 干旱区地理, 2024, 47(4): 539-548.
doi: 10.12118/j.issn.1000-6060.2023.194
|
|
[Li Heng, Zhu Bingbing, Bian He, et al. Temporal and spatial changes of extreme precipitationand its driving factors in the water-wind erosion interlacing area of the Loess Plateau from 1970 to 2020[J]. Arid Land Geography, 2024, 47(4): 539-548.]
doi: 10.12118/j.issn.1000-6060.2023.194
|
[35] |
Cai Q F, Liu Y U, Fang C X, et al. Insight into spatial-temporal patterns of hydroclimate change on the Chinese Loess Plateau over the past 250 years, using new evidence from tree rings[J]. Science of the Total Environment, 2022, 850: 157960, doi: 10.1016/j.scitotenv.2022.157960.
|
[36] |
WMO. State of the global climate 2021: WMO provisional report[M]. Geneva: WMO, 2021: 1-4.
|
[37] |
Zhang P A, Sun W Y, Xiao P Q, et al. Driving factors of heavy rainfall causing flash floods in the middle reaches of the Yellow River: A case study in the Wuding River Basin, China[J]. Sustainability, 2022, 14(13): 8004, doi: 10.3390/su14138004.
|