[1] |
张元梅, 孙桂丽, 鲁艳, 等. 气候变化和人类活动对环塔里木盆地植被覆盖度的影响[J]. 东北林业大学学报, 2024, 52(5): 75-81.
|
|
[Zhang Yuanmei, Sun Guili, Lu Yan, et al. Effects of climate change and human activities on vegetation coverage in Ring Tarim Basin[J]. Journal of Northeast Forestry University, 2024, 52(5): 75-81. ]
|
[2] |
Zheng K Y, Tan L S, Sun Y W, et al. Impacts of climate change and anthropogenic activities on vegetation change: Evidence from typical areas in China[J]. Ecological Indicators, 2021, 126: 107648, doi: 10.1016/j.ecolind.2021.107648.
|
[3] |
Yuan J, Xu Y P, Xiang J, et al. Spatiotemporal variation of vegetation coverage and its associated influence factor analysis in the Yangtze River Delta, eastern China[J]. Environmental Science and Pollution Research, 2019, 26: 32866-32879.
doi: 10.1007/s11356-019-06378-2
|
[4] |
Li X W, Zulkar H, Wang D Y, et al. Changes in vegetation coverage and migration characteristics of center of gravity in the arid desert region of northwest China in 30 recent years[J]. Land, 2022, 11(10): 1688, doi: 10.3390/land11101688.
|
[5] |
Shammi S A, Meng Q M. Use time series NDVI and EVI to develop dynamic crop growth metrics for yield modeling[J]. Ecological Indicators, 2021, 121: 107124, doi: 10.1016/j.ecolind.2020.107124.
|
[6] |
Zhang J X, Yang T, Deng M, et al. Spatiotemporal variations and its driving factors of NDVI in northwest China during 2000—2021[J]. Environmental Science and Pollution Research, 2023, 30(56): 118782-118800.
|
[7] |
Alencar A Z, Shimbo J, Lenti F, et al. Mapping three decades of changes in the Brazilian savanna native vegetation using landsat data processed in the google earth engine platform[J]. Remote Sensing, 2020, 12(6): 924, doi: 10.3390/rs12060924.
|
[8] |
Camps-Valls G, Campos-Taberner M, Moreno-Martínez Á, et al. A unified vegetation index for quantifying the terrestrial biosphere[J]. Science Advances, 2021, 7(9): eabc7447, doi: 10.1126/sciadv.abc7447.
|
[9] |
Chen Z G, Shen M G, Jiang N, et al. Daytime warming strengthened delaying effect of precipitation on end of the vegetation growing season on the Tibetan Plateau[J]. Science of the Total Environment, 2023, 892: 164382, doi: 10.1016/j.scitotenv.2023.164382.
|
[10] |
Li X, Xu L, Li M X, et al. High-resolution maps of vegetation nitrogen density on the Tibetan Plateau: An intensive field-investigation[J]. Science of the Total Environment, 2023, 904: 167233, doi: 10.1016/j.scitotenv.2023.167233.
|
[11] |
Liu Y, Tian J, Liu R H, et al. Influences of climate change and human activities on NDVI changes in China[J]. Remote Sensing, 2021, 13(21): 4326, doi: 10.3390/rs13214326.
|
[12] |
Dai Q, Cui C F, Wang S. Spatiotemporal variation and sustainability of NDVI in the Yellow River Basin[J]. Irrigation and Drainage, 2022, 71(5): 1304-1318.
|
[13] |
李敏, 张艳. 黄河流域中段植被覆盖时空变化特征及影响因素分析[J]. 贵州师范大学学报(自然科学版), 2023, 41(1): 10-20, 40.
|
|
[Li Min, Zhang Yan. Temporal and spatial variation characteristics and influencing factors of vegetation cover in the middle Yellow River Basin[J]. Journal of Guizhou Normal University (Natural Sciences Edition), 2023, 41(1): 10-20, 40. ]
|
[14] |
赵慧芳, 曹晓云. 三江源国家公园植被覆盖时空变化及其气候驱动因素[J]. 高原气象, 2022, 41(2): 328-337.
doi: 10.7522/j.issn.1000-0534.2021.00091
|
|
[Zhao Huifang, Cao Xiaoyun. Vegetation cover changes and its climate driving in Three-River-Source National Park[J]. Plateau Meteorology, 2022, 41(2): 328-337. ]
doi: 10.7522/j.issn.1000-0534.2021.00091
|
[15] |
谢绮丽, 杨鑫, 郝利娜. 2001—2020年三江源区植被覆盖时空变化特征及其影响因素[J]. 水土保持通报, 2022, 42(5): 202-212.
|
|
[Xie Qili, Yang Xin, Hao Lina. Spatio-temporal variation of vegetation cover and its driving factors in Three-River Headwaters Region during 2001—2020[J]. Bulletin of Soil and Water Conservation, 2022, 42(5): 202-212. ]
|
[16] |
Wang J, Zhao J S, Zhou P, et al. Study on the spatial and temporal evolution of NDVI and its driving mechanism based on geodetector and hurst indexes: A case study of the Tibet Autonomous Region[J]. Sustainability, 2023, 15(7): 5981, doi: 10.3390/su15075981.
|
[17] |
Chen C, Li T J, Sivakumar B, et al. Attribution of growing season vegetation activity to climate change and human activities in the Three-River Headwaters Region, China[J]. Journal of Hydroinformatics, 2020, 22(1): 186-204.
|
[18] |
王劲峰, 徐成东. 地理探测器: 原理与展望[J]. 地理学报, 2017, 72(1): 116-134.
doi: 10.11821/dlxb201701010
|
|
[Wang Jinfeng, Xu Chengdong. Geodetector: Principle and prospective[J]. Acta Geographica Sinica, 2017, 72(1): 116-134. ]
doi: 10.11821/dlxb201701010
|
[19] |
Dong Y, Yin D Q, Li X, et al. Spatial-temporal evolution of vegetation NDVI in association with climatic, environmental and anthropogenic factors in the Loess Plateau, China during 2000—2015: Quantitative analysis based on geographical detector model[J]. Remote Sensing, 2021, 13(21): 4380, doi: 10.3390/rs13214380.
|
[20] |
Gao S Q, Dong G T, Jiang X H, et al. Quantification of natural and anthropogenic driving forces of vegetation changes in the Three-River Headwater Region during 1982—2015 based on geographical detector model[J]. Remote Sensing, 2021, 13(20): 4175, doi: 10.3390/rs13204175.
|
[21] |
Wu R N, Wang Y, Liu B Y, et al. Spatial-temporal changes of NDVI in the three northeast provinces and its dual response to climate change and human activities[J]. Frontiers in Environmental Science, 2022, 10: 974988, doi: 10.3389/fenvs.2022.974988.
|
[22] |
Jiang B H, Chen W, Dai X A, et al. Change of the spatial and temporal pattern of ecological vulnerability: A case study on Cheng-Yu urban agglomeration, southwest China[J]. Ecological Indicators, 2023, 149: 110161, doi: 10.1016/j.ecolind.2023.110161.
|
[23] |
陆晴, 廖佳婧, 胡慧敏. 基于SRP模型的红壤丘陵区生态脆弱性评价——以江西省赣南地区为例[J]. 上海国土资源, 2023, 44(3): 100-105, 156.
|
|
[Lu Qing, Liao Jiajing, Hu Huimin. Evaluation of ecological vulnerability in the Gannan region of Jiangxi Province[J]. Shanghai Land & Resources, 2023, 44(3): 100-105, 156. ]
|
[24] |
王成军, 罗昕玥. 基于SRP模型榆林市生态脆弱性评价及时空演变研究[J]. 生产力研究, 2023(10): 56-61.
|
|
[Wang Chengjun, Luo Xinyue. A study on ecological vulnerability evaluation and spatial and temporal evolution of Yulin City based on SRP modeling[J]. Productivity Research, 2023(10): 56-61. ]
|
[25] |
常溢华, 蔡海生. 基于SRP模型的多尺度生态脆弱性动态评价——以江西省鄱阳县为例[J]. 江西农业大学学报, 2022, 44(1): 245-260.
|
|
[Chang Yihua, Cai Haisheng. Dynamic assessment of multi-scale eco-environmental vulnerability based on SRP model in Poyang County[J]. Acta Agriculturae Universitatis Jiangxiensis, 2022, 44(1): 245-260. ]
|
[26] |
樊星, 秦圆圆, 高翔. IPCC第六次评估报告第一工作组报告主要结论解读及建议[J]. 环境保护, 2021, 49(增刊2): 44-48.
|
|
[Fan Xing, Qin Yuanyuan, Gao Xiang. Interpretation and suggestions on the main conclusions of the IPCC sixth assessment report by working group I[J]. Environmental Protection, 2021, 49(Suppl. 2): 44-48. ]
|
[27] |
丁文荣, 李孝川, 陈相标. 珠江源区植被变化特征及其影响因素研究[J]. 人民长江, 2024, 55(3): 83-88, 96.
|
|
[Ding Wenrong, Li Xiaochuan, Chen Xiangbiao. Dynamic characteristics and attribution of vegetation in source region of Pearl River[J]. Yangtze River, 2024, 55(3): 83-88, 96. ]
|
[28] |
Mann H B. Nonparametric tests against trend[J]. Econometrica: Journal of the Econometric Society, 1945: 245-259.
|
[29] |
Wang J F, Li X H, Christakos G, et al. Geographical detectors-based health risk assessment and its application in the neural tube defects study of the Heshun Region, China[J]. International Journal of Geographical Information Science, 2010, 24(1): 107-127.
|
[30] |
李佳, 彭泰来, 刘寅学, 等. 基于SRP模型的广东省林地生态脆弱性评价[J]. 中南林业调查规划, 2024, 43(1): 33-37.
|
|
[Li Jia, Peng Tailai, Liu Yinxue, et al. Forest ecological vulnerability assessment of Guangdong Province based on SRP model[J]. Central South Forest Inventory and Planning, 2024, 43(1): 33-37. ]
|
[31] |
金丽娟, 许泉立. 基于SRP模型的四川省生态脆弱性评价[J]. 生态科学, 2022, 41(2): 156-165.
|
|
[Jin Lijuan, Xu Quanli. Ecological vulnerability assessment of Sichuan Province based on SRP model[J]. Ecological Science, 2022, 41(2): 156-165. ]
|
[32] |
卓静, 胡皓, 何慧娟, 等. 陕北黄土高原生态脆弱性时空变异及驱动因素分析[J]. 干旱区地理, 2023, 46(11): 1768-1777.
doi: 10.12118/j.issn.1000-6060.2023.027
|
|
[Zhuo Jing, Hu Hao, He Huijuan, et al. Spatiotemporal variation and driving factors of ecological vulnerability in the Loess Plateau of northern Shaanxi[J]. Arid Land Geography, 2023, 46(11): 1768-1777. ]
doi: 10.12118/j.issn.1000-6060.2023.027
|
[33] |
黄越, 程静, 王鹏. 中国北方农牧交错区生态脆弱性时空演变格局与驱动因素——以盐池县为例[J]. 干旱区地理, 2021, 44(4): 1175-1185.
doi: 10.12118/j.issn.1000–6060.2021.04.29
|
|
[Huang Yue, Cheng Jing, Wang Peng. Spatiotemporal evolution pattern and driving factors of ecological vulnerability in agro-pastoral region in northern China: A case of Yanchi County in Ningxia[J]. Arid Land Geography, 2021, 44(4): 1175-1185. ]
doi: 10.12118/j.issn.1000–6060.2021.04.29
|
[34] |
贾晶晶, 赵军, 王建邦, 等. 基于SRP模型的石羊河流域生态脆弱性评价[J]. 干旱区资源与环境, 2020, 34(1): 34-41.
|
|
[Jia Jingjing, Zhao Jun, Wang Jianbang, et al. Ecological vulnerability assessment of Shiyang River Basin based on SRP model[J]. Journal of Arid Land Resources and Environment, 2020, 34(1): 34-41. ]
|
[35] |
邰苏日嘎拉, 王永亮, 陈国栋, 等. 基于SRP模型的内蒙古鄂伦春地区生态脆弱性评价[J]. 中国地质, 2024, 51(1): 234-247.
|
|
[Tai Surigala, Wang Yongliang, Chen Guodong, et al. Ecological vulnerability assessment of Oroqen region in the Inner Mongolia based on SRP model[J]. Geology in China, 2024, 51(1): 234-247. ]
|
[36] |
饶品增, 王义成, 王芳. 三江源植被覆盖区NDVI变化及影响因素分析[J]. 草地学报, 2021, 29(3): 572-582.
doi: 10.11733/j.issn.1007-0435.2021.03.019
|
|
[Rao Pinzeng, Wang Yicheng, Wang Fang. Analysis on the NDVI change and influence factors of vegetation cover in the Three-River Headwaters Region[J]. Acta Agrestia Sinica, 2021, 29(3): 572-582. ]
doi: 10.11733/j.issn.1007-0435.2021.03.019
|
[37] |
张青. 三江源地区植被覆盖时空变化特征及其影响因素研究[D]. 郑州: 郑州大学, 2022.
|
|
[Zhang Qing. Spatial-temporal variation of vegetation cover and its influencing factors in the Three-River Headwaters Region[D]. Zhengzhou: Zhengzhou University, 2022. ]
|
[38] |
Feng X J, Tian J, Wang Y X, et al. Spatio-temporal variation and climatic driving factors of vegetation coverage in the Yellow River Basin from 2001 to 2020 based on kNDVI[J]. Forests, 2023, 14(3): 620, doi: 10.3390/f14030620.
|