| [1] |
Yang J, Wang Y C, Xiu C L, et al. Optimizing local climate zones to mitigate urban heat island effect in human settlements[J]. Journal of Cleaner Production, 2020, 275: 123767, doi: 10.1016/j.jclepro.2020.123767.
|
| [2] |
吕佳佳, 吴建国. 气候变化对植物及植被分布的影响研究进展[J]. 环境科学与技术, 2009, 32(6): 85-95.
|
|
[Lü Jiajia, Wu Jianguo. Advances in the effects of climate change on the distribution of plant species and vegetation in China[J]. Environmental Science and Technology, 2009, 32(6): 85-95.]
|
| [3] |
赵娟, 史雅楠, 李新平. 气候变暖背景下黄河中游晋西黄土高原的植被响应[J]. 山西林业科技, 2024, 53(2): 46-48.
|
|
[Zhao Juan, Shi Ya’nan, Li Xinping. Vegetation response of the western Shanxi Loess Plateau in the middle reaches of the Yellow River under the background of climate warming[J]. Shanxi Forestry Science and Technology, 2024, 53(2): 46-48.]
|
| [4] |
Armstrong Mckay D I, Staal A, Abrams J F, et al. Exceeding 1.5 ℃ global warming could trigger multiple climate tipping points[J]. Science, 2022, 377(6611): 1171, doi: 10.1126/science.abn7950.
|
| [5] |
卢冬燕, 朱秀芳, 唐明秀, 等. 不同温升情景下中国旱灾风险变化评估[J]. 干旱区地理, 2024, 47(3): 369-379.
doi: 10.12118/j.issn.1000-6060.2023.448
|
|
[Lu Dongyan, Zhu Xiufang, Tang Mingxiu, et al. Assessment of drought risk changes in China under different temperature rise scenarios[J]. Arid Land Geography, 2024, 47(3): 369-379.]
doi: 10.12118/j.issn.1000-6060.2023.448
|
| [6] |
Kaky E, Nolan V, Alatawi A, et al. A comparison between Ensemble and MaxEnt species distribution modelling approaches for conservation: A case study with Egyptian medicinal plants[J]. Ecological Informatics, 2020, 60: 101150, doi: 10.1016/j.ecoinf.2020.101150.
|
| [7] |
Liu X T, Yuan Q, Ni J. Research advances in modelling plant species distribution in China[J]. Chinese Journal of Plant Ecology, 2019, 43(4): 273-283.
|
| [8] |
Xing D L, Hao Z Q. The principle of maximum entropy and its applications in ecology[J]. Biodiversity Science, 2011, 19(3): 295-302.
|
| [9] |
马正平. 准噶尔西部沙漠中的主要植物[J]. 新疆农业科学, 1959(12): 500-505.
|
|
[Ma Zhengping. The main plants in the western deserts of the Junggar Basin[J]. Xinjiang Agricultural Sciences, 1959(12): 500-505.]
|
| [10] |
王新军. 古尔班通古特沙漠固沙植被格局与水文过程的关系研究[D]. 乌鲁木齐: 新疆农业大学, 2020.
|
|
[Wang Xinjun. Study on relationship of sand-fixating vegetation pattern and hydrological process in Gurbantonggut Desert[D]. Urumqi: Xinjiang Agricultural University, 2020.]
|
| [11] |
陶冶, 张元明. 准噶尔沙蒿群落主要物种间的关联性分析[J]. 中国沙漠, 2012, 32(5): 1308-1314.
|
|
[Tao Ye, Zhang Yuanming. Interspecific associations among main species in Artemisia songarica communities in Junggar Basin, China[J]. Journal of Desert Research, 2012, 32(5): 1308-1314.]
|
| [12] |
Wang X M, Geng X, Liu B, et al. Desert ecosystems in China: Past, present, and future[J]. Earth-Science Reviews, 2022, 234: 104206, doi: 10.1016/j.earscirev.2022.104206.
|
| [13] |
张杰, 张旸, 赵振勇, 等. 中国飞蝗(Locusta migratoria)灾害地理分布模拟及其生物气候因子分析[J]. 干旱区地理, 2019, 42(3): 590-598.
|
|
[Zhang Jie, Zhang Yang, Zhao Zhenyong, et al. Potential geographic distribution modeling and bioclimatic analysis of outbreak risk for the migratory locust plague in China[J]. Arid Land Geography, 2019, 42(3): 590-598.]
doi: 10.12118/j.issn.1000-6060.2019.03.15
|
| [14] |
Mu H W, Li X C, Wen Y N, et al. A global record of annual terrestrial human footprint dataset from 2000 to 2018[J]. Scientific Data, 2022, 9: 176, doi: 10.1038/s41597-022-01284-8.
pmid: 35440581
|
| [15] |
Zhang Y F, Chen S T, Gao S T, et al. Prediction of global potential suitable habitats of Nicotiana alata Link et Otto based on MaxEnt model[J]. Scientific Reports, 2023, 13: 4851, doi: 10.1038/s41598-023-29678-7.
|
| [16] |
张佳怡, 伦玉蕊, 刘浏, 等. CMIP6多模式在青藏高原的适应性评估及未来气候变化预估[J]. 北京师范大学学报(自然科学版), 2022, 58(1): 77-89.
|
|
[Zhang Jiayi, Lun Yurui, Liu Liu, et al. CMIP6 evaluation and projection of climate change in Tibetan Plateua[J]. Journal of Beijing Normal University (Natural Science Edition), 2022, 58(1): 77-89.]
|
| [17] |
Fang J Q, Shi J F, Zhang P, et al. Potential distribution projections for Senegalia senegal (L.) Britton under climate change scenarios[J]. Forests, 2024, 15(2): 379, doi: 10.3390/f15020379.
|
| [18] |
Zhao Z Y, Xiao N W, Liu G H, et al. Prediction of the potential geographical distribution of five species of Scutiger in the south of Hengduan Mountains biodiversity conservation priority zone[J]. Acta Ecologica Sinica, 2022, 42(7): 2636-2647.
|
| [19] |
Shcheglovitova M, Anderson R P. Estimating optimal complexity for ecological niche models: A jackknife approach for species with small sample sizes[J]. Ecological Modelling, 2013, 269: 9-17.
|
| [20] |
吴双梅, 周冬梅, 马静, 等. 不同气候情景下环县柠条锦鸡儿分布及土壤碳储量特征[J]. 干旱区地理, 2025, 48(5): 812-824.
doi: 10.12118/j.issn.1000-6060.2024.407
|
|
[Wu Shuangmei, Zhou Dongmei, Ma Jing, et al. Characteristics of Caragana korshinskii distribution and soilcarbon storage in Huan County under different climate scenarios[J]. Arid Land Geography, 2025, 48(5): 812-824.]
doi: 10.12118/j.issn.1000-6060.2024.407
|
| [21] |
Shao M H, Wang L, Li B W, et al. Maxent modeling for identifying the nature reserve of Cistanche deserticola Ma under effects of the host (Haloxylon Bunge) forest and climate changes in Xinjiang, China[J]. Forests, 2022, 13(2): 189, doi: 10.3390/f13020189.
|
| [22] |
张明珠, 叶兴状, 李佳慧, 等. 气候变化情景下长序榆在中国的潜在适生区预测[J]. 生态学杂志, 2021, 40(12): 3822-3835.
|
|
[Zhang Mingzhu, Ye Xingzhuang, Li Jiahui, et al. Prediction of potential suitable area of Ulmus elongata in China under climate change scenarios[J]. Chinese Journal of Ecology, 2021, 40(12): 3822-3835.]
|
| [23] |
孙淑霞. 气候变化下中国栎属物种及其丰富度潜在分布格局模拟预测研究[D]. 济南: 山东大学, 2022.
|
|
[Sun Shuxia. The effect of climate change on the potential distribution pattern of oaks (Quercus L.) and its richness in China[D]. Jinan: Shandong University, 2022.]
|
| [24] |
李述. 干旱、半干旱区土地利用/覆盖变化与荒漠化的遥感综合研究[D]. 兰州: 兰州大学, 2006.
|
|
[Li Shu. A synthetical study on land use/cover change and desertification in arid and semiarid region[D]. Lanzhou: Lanzhou University, 2006.]
|
| [25] |
Guo B, Wei C X, Yu Y, et al. The dominant influencing factors of desertification changes in the source region of Yellow River: Climate change or human activity?[J]. Science of the Total Environment, 2022, 813: 152512, doi: 10.1016/j.scitotenv.2021.152512.
|
| [26] |
高晓宇, 郝海超, 张雪琪, 等. 中国西北干旱区植被水分利用效率变化对气象要素的响应——以新疆为例[J]. 干旱区地理, 2023, 46(7): 1111-1120.
doi: 10.12118/j.issn.1000-6060.2022.545
|
|
[Gao Xiaoyu, Hao Haichao, Zhang Xueqi, et al. Responses of vegetation water use efficiency to meteorological factors in arid areas of northwest China: A case of Xinjiang[J]. Arid Land Geography, 2023, 46(7): 1111-1120.]
doi: 10.12118/j.issn.1000-6060.2022.545
|
| [27] |
王方琳, 柴成武, 赵鹏, 等. 3种荒漠植物光合及叶绿素荧光对干旱胁迫的响应及抗旱性评价[J]. 西北植物学报, 2021, 41(10): 1755-1765.
|
|
[Wang Fanglin, Chai Chengwu, Zhao Peng, et al. Photosynthetic and ChlorophyⅡ fluorescence responses of three desert species to drought stress and evaluation of drought resistance[J]. Acta Botanica Boreali-Occidentalia Sinica, 2021, 41(10): 1755-1765.]
|
| [28] |
褚建民. 干旱区植物的水分选择性利用研究[D]. 北京: 中国林业科学研究院, 2008.
|
|
[Chu Jianmin. Study on water selective utilization by plants in arid regions[D]. Beijing: Chinese Academy of Forestry Sciences, 2008.]
|
| [29] |
陈林, 杨新国, 宋乃平, 等. 干旱半干旱地区植物叶片水分吸收性状[J]. 浙江大学学报(农业与生命科学版), 2013, 39(5): 565-574.
|
|
[Chen Lin, Yang Xinguo, Song Naiping, et al. Leaf water uptake strategy of plants in the arid and semi-arid region of Ningxia[J]. Journal of Zhejiang University (Agriculture and Life Sciences Edition), 2013, 39(5): 565-574.]
|
| [30] |
郑新军, 李嵩, 李彦. 准噶尔盆地荒漠植物的叶片水分吸收策略[J]. 植物生态学报, 2011, 35(9): 893-905.
doi: 10.3724/SP.J.1258.2011.00893
|
|
[Zheng Xinjun, Li Song, Li Yan. Leaf water uptake strategy of desert plants in the Junggar Basin, China[J]. Chinese Journal of Plant Ecology, 2011, 35(9): 893-905.]
doi: 10.3724/SP.J.1258.2011.00893
|
| [31] |
Madouh T, Quoreshi A. The function of Arbuscular mycorrhizal fungi associated with drought stress resistance in native plants of arid desert ecosystems: A review[J]. Diversity-Basel, 2023, 15(3): 391, doi: 10.3390/d15030391.
|
| [32] |
施雅风, 沈永平, 李栋梁, 等. 中国西北气候由暖干向暖湿转型的特征和趋势探讨[J]. 第四纪研究, 2003(2): 152-164.
|
|
[Shi Yafeng, Shen Yongping, Li Dongliang, et al. Discussion on the present climate change from warm-dry to warm wet in northwest China[J]. Quaternary Sciences, 2003(2): 152-164.]
|
| [33] |
李伟光, 易雪, 侯美亭, 等. 基于标准化降水蒸散指数的中国干旱趋势研究[J]. 中国生态农业学报, 2012, 20(5): 643-649.
|
|
[Li Weiguang, Yi Xue, Hou Meiting, et al. Standardized precipitation evapotranspiration index shows drought trends in China[J]. Journal of Eco-Agriculture in China, 2012, 20(5): 643-649.]
|
| [34] |
阿旺, 吕汪汪, 周阳, 等. 干旱降低了气候变暖对高寒草地群落的正效应[J]. 中国科学: 地球科学, 2024, 54(10): 3278-3291.
|
|
[A Wang, Lü Wangwang, Zhou Yang, et al. Drought decreases the positive impact of warming on an alpine grassland community[J]. Scientia Sinica (Terrae), 2024, 54(10): 3278-3291.]
|
| [35] |
Lenoir J, Gegout J, Marquet P, et al. A significant upward shift in plant species optimum elevation during the 20th century[J]. Science, 2008, 320(5884): 1768-1771.
doi: 10.1126/science.1156831
pmid: 18583610
|
| [36] |
Thuiller W. Editorial commentary on “BIOMOD-optimizing predictions of species distributions and projecting potential future shifts under global change”[J]. Global Change Biology, 2014, 20(12): 3591-3592.
|
| [37] |
Shafer S, Bartlein P, Thompson R. Potential changes in the distributions of western North America tree and shrub taxa under future climate scenarios[J]. Ecosystems, 2001, 4(3): 200-215.
|
| [38] |
魏宇晨. 亚洲中高纬植被对极端气候的响应及其模拟评估[D]. 南京: 南京信息工程大学, 2023.
|
|
[Wei Yuchen. Response of vegetation to climate extremes in middle and high latitudes of Asia and its simulation and assessment[J]. Nanjing: Nanjing University of Information Science and Technology, 2023.]
|
| [39] |
Ni M, Vellend M. Soil properties constrain predicted poleward migration of plants under climate change[J]. New Phytologist, 2024, 241(1): 131-141.
|