[1] |
Rasiah R, Kari F, Sadoi Y, et al. Climate change and sustainable development issues: Arguments and policy initiatives[J]. Journal of the Asia Pacific Economy, 2018, 23(2): 187-194.
|
[2] |
张永生, 巢清尘, 陈迎, 等. 中国碳中和: 引领全球气候治理和绿色转型[J]. 国际经济评论, 2021(3): 9-26, 4.
|
|
[Zhang Yongsheng, Chao Qingchen, Chen Ying, et al. China’s carbon neutrality: Leading in global climate governance and green transformation[J]. International Economic Review, 2021(3): 9-26, 4. ]
|
[3] |
曹先磊, 程宝栋. 中国林业碳汇核证减排量项目市场发展的现状、问题与建议[J]. 环境保护, 2018, 46(15): 27-34.
|
|
[Cao Xianlei, Cheng Baodong. Market development of forestry carbon sequestration project of China certified emission reduction: Current situation, challenges and suggestions[J]. Environmental Protection, 2018, 46(15): 27-34. ]
|
[4] |
Shang R, Chen J M, Xu M, et al. China’s current forest age structure will lead to weakened carbon sinks in the near future[J]. The Innovation, 2023, 4(6): 1-9.
|
[5] |
Hong S B, Ding J Z, Kan F, et al. Asymmetry of carbon sequestrations by plant and soil after forestation regulated by soil nitrogen[J]. Nature Communications, 2023, 14: 1-10.
|
[6] |
Steffe W, Noble I, Canadell J, et al. The terrestrial carbon cycle: Implications for the Kyoto Protocol[J]. Science, 1998, 280(5368): 1393-1394.
|
[7] |
马成仓, 高玉葆, 郭宏宇, 等. 内蒙古高原西部荒漠区锦鸡儿属(Caragana)优势种的形态适应特征[J]. 生态学报, 2006, 26(7): 2308-2312.
|
|
[Ma Chengcang, Gao Yubao, Guo Hongyu, et al. Morphological adaptation of four dominant Caragana species in the desert area of the Inner Mongolia Plateau[J]. Acta Ecologica Sinica, 2006, 26(7): 2308-2312. ]
|
[8] |
Wang S, Fu B J, Piao S L, et al. Reduced sediment transport in the Yellow River due to anthropogenic changes[J]. Nature Geoscience, 2016, 9(1): 38-41.
|
[9] |
杨阳, 刘秉儒, 宋乃平, 等. 人工柠条灌丛密度对荒漠草原土壤养分空间分布的影响[J]. 草业学报, 2014, 23(5): 107-115.
doi: 10.11686/cyxb20140512
|
|
[Yang Yang, Liu Bingru, Song Naiping, et al. The effect of planted Caragana density on the spatial distribution of soil nutrients in desert steppe[J]. Acta Prataculturae Sinica, 2014, 23(5): 107-115. ]
|
[10] |
Fang J Y, Zhu J L, Shi Y. The responses of ecosystems to global warming[J]. Chinese Science Bulletin, 2018, 63(2): 136-140.
|
[11] |
张晓芹. 西北旱区典型生态经济树种地理分布与气候适宜性研究[D]. 北京: 中国科学院大学, 2018.
|
|
[Zhang Xiaoqin. Geographical distribution and climatic suitability of typical eco-economical tree species in the dryland of northwest China[D]. Beijing: University of Chinese Academy of Sciences, 2018. ]
|
[12] |
陈美霖, 韩海荣. 黄土高原地区4种常见树种适宜区对气候变化响应[J]. 北京林业大学学报, 2023, 45(3): 21-33.
|
|
[Chen Meilin, Han Hairong. Response of four common tree species suitable areas to climate change in the Loess Plateau region of northern China[J]. Journal of Beijing Forestry University, 2023, 45(3): 21-33. ]
|
[13] |
邓迪, 赵泽斌, 马媛. 基于GIS的柠条锦鸡儿(Caragana korshinskii)分布模型[J]. 中国沙漠, 2020, 40(5): 74-80.
doi: 10.7522/j.issn.1000-694X.2020.00021
|
|
[Deng Di, Zhao Zebin, Ma Yuan. Modeling of species distribution with GIS in arid regions: Take Caragana korshinskii for example[J]. Journal of Desert Research, 2020, 40(5): 74-80. ]
doi: 10.7522/j.issn.1000-694X.2020.00021
|
[14] |
Morin X, Lechowicz M J. Contemporary perspectives on the niche that can improve models of species range shifts under climate change[J]. Biology Letters, 2008, 4(5): 573-576.
doi: 10.1098/rsbl.2008.0181
pmid: 18664418
|
[15] |
董子彦, 马乐, 高姝晗, 等. 四合木(Tetraena mongolica)的潜在适生区预测及其与自然保护区GAP分析[J]. 干旱区地理, 2023, 46(4): 595-603.
doi: 10.12118/j.issn.1000-6060.2022.292
|
|
[Dong Ziyan, Ma Le, Gao Shuhan, et al. Potential habitat prediction of Tetraena mongolica and its GAP analysis with nature reserves[J]. Arid Land Geography, 2023, 46(4): 595-603. ]
doi: 10.12118/j.issn.1000-6060.2022.292
|
[16] |
Semwal D P, Pandey A, Gore P G, et al. Habitat prediction mapping using BioClim model for prioritizing germplasm collection and conservation of an aquatic cash ‘makhana’ (Euryale ferox Salisb.) in India[J]. Genetic Resources and Crop Evolution, 2021, 68(8): 3445-3456.
|
[17] |
赵国兵, 郑江华, 王蕾, 等. 基于RF分类调优和SNIC聚类的新疆红枣种植区遥感提取[J]. 干旱区地理, 2024, 47(6): 1004-1014.
doi: 10.12118/j.issn.1000-6060.2023.382
|
|
[Zhao Guobing, Zheng Jianghua, Wang Lei, et al. Remote sensing extraction of jujube planting area in Xinjiang based on RF classification optimization and SNIC clustering[J]. Arid Land Geography, 2024, 47(6): 1004-1014. ]
doi: 10.12118/j.issn.1000-6060.2023.382
|
[18] |
Philips S J, Anderson R P, Schapire R E. Maximum entropy modeling of species geographic distributions[J]. Ecological Modeling, 2006, 190(3-4): 231-259.
|
[19] |
Zhang Y C, Jiang X H, Lei Y X, et al. Potentially suitable distribution areas of Populus euphratica and Tamarix chinensis by MaxEnt and random forest model in the lower reaches of the Heihe River, China[J]. Environmental Monitoring and Assessment, 2023, 195(12): 1-12.
|
[20] |
李龙, 王亮, 温阿敏, 等. 基于MaxEnt模型的甘肃安西极旱荒漠国家级自然保护区北山羊生境评估[J]. 生态学报, 2021, 41(24): 9932-9940.
|
|
[Li Long, Wang Liang, Wen Amin, et al. Assessment of habitat suitability of Asiatic ibex (Capra sibirica) in the Gansu Anxi Extreme-Arid Desert National Nature Reserve based on MaxEnt model[J]. Acta Ecologica Sinica, 2021, 41(24): 9932-9940. ]
|
[21] |
杨慧, 张泽, 张兰, 等. 柠条种子萌发对不同温度和土壤含水量的响应[J]. 干旱区研究, 2022, 39(6): 1875-1884.
doi: 10.13866/j.azr.2022.06.18
|
|
[Yang Hui, Zhang Ze, Zhang Lan, et al. Responses of seed germination of Caragana korshinskii to different temperatures and soil water content[J]. Arid Zone Research, 2022, 39(6): 1875-1884. ]
|
[22] |
程杰, 刘永辉, 田瑛. 宁夏半干旱区柠条锦鸡儿灌木林生长特征[J]. 水土保持通报, 2016, 36(1): 332-336.
|
|
[Cheng Jie, Liu Yonghui, Tian Ying. Growth characteristics of Caragana Korshinskii shrubbery in semi-arid regions of Ningxia Hui Autonomous Region[J]. Bulletin of Soil and Water Conservation, 2016, 36(1): 332-336. ]
|
[23] |
王子婷, 柴春山, 张洋东, 等. 半干旱黄土区柠条生长与环境因子的关系研究进展[J]. 中国水土保持, 2021(1): 49-52.
|
|
[Wang Ziting, Chai Chunshan, Zhang Yangdong at al. Research progress on relationship between Caragana korshinskii growth and environmental factors in the semi-arid loess area[J]. Soil and Water Conservation in China, 2021(1): 49-52. ]
|
[24] |
黄海霞, 张玉珍. 兰州北山“三水”造林区柠条的生长适宜性[J]. 中国水土保持科学, 2013, 11(2): 72-76.
|
|
[Huang Haixia, Zhang Yuzhen. Growth suitability of Caragana korshinkii in Three Water Types afforested area in northern mountain of Lanzhou City[J]. Science of Soil and Water Conservation, 2013, 11(2): 72-76. ]
|
[25] |
Ray D, Behera M D, Jacob J. Predicting the distribution of rubber trees (Hevea brasiliensis) through ecological niche modelling with climate, soil, topography and socioeconomic factors[J]. Ecological Research, 2016, 31(1): 75-91.
|
[26] |
李文庆, 徐洲锋, 史鸣明, 等. 不同气候情景下四子柳的亚洲潜在地理分布格局变化预测[J]. 生态学报, 2019, 39(9): 3224-3234.
|
|
[Li Wenqing, Xu Zhoufeng, Shi Mingming, et al. Prediction of potential geographical distribution patterns of Salix tetrasperma Roxb. in Asia under different climate scenarios[J]. Acta Ecologica Sinica, 2019, 39(9): 3224-3234. ]
|
[27] |
廖剑锋, 易自力, 李世成, 等. 基于Maxent模型的双药芒不同时期潜在分布研究[J]. 生态学报, 2020, 40(22): 8297-8305.
|
|
[Liao Jianfeng, Yi Zili, Li Shicheng, et al. Maxent modeling for predicting the potentially geographical distribution of Miscanthus nudipes under different climate conditions[J]. Acta Ecologica Sinica, 2020, 40(22): 8297-8305. ]
|
[28] |
Muscarella R, Galante P J, Soley-Guardia M, et al. ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for MaxEnt ecological niche models[J]. Methods in Ecology & Evolution, 2014, 5(11): 1198-1205.
|
[29] |
Phillips S J, Anderson R P, Dudík M, et al. Opening the black box: An open-source release of Maxent[J]. Ecography, 2017, 40(7): 887-893.
|
[30] |
朱耿平, 范靖宇, 王梦琳, 等. ROC曲线形状在生态位模型评价中的重要性——以美国白蛾为例[J]. 生物安全学报, 2017, 26(3): 184-190.
|
|
[Zhu Gengping, Fan Jingyu, Wang Menglin, et al. The importance of the shape of receiver operating characteristic (ROC) curve in ecological niche model evaluation: Case study of Hlyphantria cunea[J]. Journal of Biosafety, 2017, 26(3): 184-190. ]
|
[31] |
曲卫东, 陈云明, 王琳琳, 等. 黄土丘陵区柠条人工林土壤有机碳动态及其影响因子[J]. 中国水土保持科学, 2011, 9(4): 72-77.
|
|
[Qu Weidong, Chen Yunming, Wang Linlin, et al. Dynamics of soil organic carbon in Caragana microphylla forest and its relationship with environment factors in loess hilly region[J]. Science of Soil and Water Conservation, 2011, 9(4): 72-77. ]
|
[32] |
韩楚翘, 郑江华, 王哲, 等. 基于PLUS-InVEST模型吐哈盆地陆地生态系统碳储量时空变化及多情景模拟[J]. 干旱区地理, 2024, 47(2): 260-269.
doi: 10.12118/j.issn.1000-6060.2023.066
|
|
[Han Chuqiao, Zheng Jianghua, Wang Zhe, et al. Spatiotemporal variation and multiscenario simulation of carbon storage in terrestrial ecosystems in the Turpan-Hami Basin based on PLUS-InVEST model[J]. Arid Land Geography, 2024, 47(2): 260-269. ]
doi: 10.12118/j.issn.1000-6060.2023.066
|
[33] |
Alam S A, Starr M, Clark B J F. Tree biomass and soil organic carbon densities across the Sudanese woodland savannah: A regional carbon sequestration study[J]. Journal of Arid Environments, 2013, 89(1): 67-76.
|
[34] |
王绮, 樊保国, 赵光华. 气候变化下毛榛在中国的潜在适生区预测[J]. 生态学杂志, 2020, 39(11): 3774-3784.
|
|
[Wang Qi, Fan Baoguo, Zhao Guanghua. Prediction of potential distribution area of Corylus mandshurica in China under climate change[J]. Chinese Journal of Ecology, 2020, 39(11): 3774-3784. ]
|
[35] |
Woodward F I, Williams B G. Climate and plant distribution at global and local scales[J]. Vegetation, 1987, 69(1-3): 189-197.
|
[36] |
周振钊, 范春楠, 郭忠玲, 等. 长白山红松阔叶林林下灌草生物量模型构建[J]. 北华大学学报(自然科学版), 2020, 21(3): 300-305.
|
|
[Zhou Zhenzhao, Fan Chunnan, Guo Zhongling, et al. Biomass of shrub and herb under mixed broad-leaved Korean pine forest in Changbai Mountain and its model construction[J]. Journal of Beihua University (Natural Science Edition), 2020, 21(3): 300-305. ]
|
[37] |
Xu H, Yue C, Zhang Y, et al. Forestation at the right time with the right species can generate persistent carbon benefits in China[J]. Proceedings of the National Academy of Sciences, 2023, 120(41): e2304988120, doi: 10.1073/pnas.2304988120.
|
[38] |
徐进勇. 中国潜在造林地及其气候生产潜力空间分布估算[J]. 地理学报, 2023, 78(3): 677-693.
doi: 10.11821/dlxb202303011
|
|
[Xu Jinyong. Estimation of the spatial distribution of potential forestation land and its climatic potential productivity in China[J]. Acta Geographica Sinica, 2023, 78(3): 677-693. ]
doi: 10.11821/dlxb202303011
|
[39] |
He B, Ding K J. Localize the impact of global greenhouse gases emissions under an uncertain future: A case study in Western Cape, South Africa[J]. Earth, 2021, 2(1): 111-123.
|
[40] |
Rustad L E, Campbell J L, Marion G M, et al. A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming[J]. Oecologia, 2001, 126(4): 543-562.
doi: 10.1007/s004420000544
pmid: 28547240
|
[41] |
郭广芬. 未来气候变化对我国土壤有机碳储藏的影响[D]. 北京: 中国气象科学研究院, 2006.
|
|
[Guo Guangfen. Effects of future climate change on the storage of soil organic carbon in terrestrial ecosystems of China[D]. Beijing: Chinese Academy of Meteorological Sciences, 2006. ]
|
[42] |
徐小锋, 田汉勤, 万师强. 气候变暖对陆地生态系统碳循环的影响[J]. 植物生态学报, 2007, 31(2): 175-188.
doi: 10.17521/cjpe.2007.0023
|
|
[Xu Xiaofeng, Tian Hanqin, Wan Shiqiang. Climate warming impacts on carbon cycling in terrestrial ecosystems[J]. Journal of Plant Ecology, 2007, 31(2): 175-188. ]
|
[43] |
卫云燕, 尹华军, 刘庆, 等. 气候变暖背景下森林土壤碳循环研究进展[J]. 应用与环境生物学报, 2009, 15(6): 888-894.
|
|
[Wei Yunyan, Yin Huajun, Liu Qing, et al. Advance in research of forest carbon cycling under climate warming[J]. Chinese Journal of Applied and Environmental Biology, 2009, 15(6): 888-894. ]
|
[44] |
崔写, 董燕, 张露尹, 等. 基于SSP-RCP情景的黄土高原土地变化模拟及草原碳储量[J]. 环境科学, 2024, 45(5): 2817-2827.
|
|
[Cui Xie, Dong Yan, Zhang Luyin, et al. Land change simulation and grassland carbon storage in the Loess Plateau based on SSP-RCP scenarios[J]. Environmental Science, 2024, 45(5): 2817-2827. ]
|