干旱区地理 ›› 2024, Vol. 47 ›› Issue (6): 967-979.doi: 10.12118/j.issn.1000-6060.2023.266
收稿日期:
2023-06-07
修回日期:
2023-09-14
出版日期:
2024-06-25
发布日期:
2024-07-09
通讯作者:
黄晓军(1983-),男,教授、博士生导师,主要从事城市脆弱性与韧性研究. E-mail: huangxj@nwu.edu.cn作者简介:
纪王迪(2000-),女,硕士研究生,主要从事城市热环境与脆弱性研究. E-mail: jwangd2000@163.com
基金资助:
JI Wangdi1(), HUANG Xiaojun1,2,3(), BAO Wei1, MA Yaozhuang1
Received:
2023-06-07
Revised:
2023-09-14
Published:
2024-06-25
Online:
2024-07-09
摘要:
人类活动对全球温度升高的促进作用愈加明显,如何科学衡量人类活动强度并探究其与地表温度的时空关联性成为当前研究热题。以关中地区为例,整合人口密度、地区生产总值、夜间灯光强度、建设用地面积比例、电量消耗5个指标表征人类活动强度,分析关中地区人类活动强度与地表温度时空变化规律,探究人类活动强度与地表温度关联性及其驱动作用。结果表明:(1) 2001—2020年关中地区平均地表高温、低温区域分别呈现总体增大、减少的趋势,地表高温区域范围不断扩大。(2) 2000—2020年关中地区的人类活动强度逐渐增加,特别是在各地级市的市辖区和主要居民点,高强度区域范围不断扩大,而低强度区域主要位于秦岭山区。(3) 2000—2020年关中地区人类活动强度与地表温度呈显著正相关性和空间上的集聚性,正相关区域面积呈现增大趋势,主要由不显著及负相关转化为正相关区域,高-高类型集聚区主要分布在各城市主城区,低-低类型集聚区主要分布在秦岭山区。(4) 影响地表温度的人类活动强度指标中,夜间灯光强度、人口密度、建设用地面积比例对地表温度的驱动作用最为显著;且夜间灯光强度与建设用地面积比例、人口密度与建设用地面积比例交互作用对地表温度的解释力最强。
纪王迪, 黄晓军, 包微, 马耀壮. 关中地区人类活动强度与地表温度的时空关联特征及其驱动作用[J]. 干旱区地理, 2024, 47(6): 967-979.
JI Wangdi, HUANG Xiaojun, BAO Wei, MA Yaozhuang. Spatiotemporal correlation characteristics and driving forces of human activity intensity and surface temperature in the Guanzhong area[J]. Arid Land Geography, 2024, 47(6): 967-979.
表2
数据类型及其来源"
数据名称 | 分辨率 | 年份 | 数据来源 |
---|---|---|---|
地表温度(LST) | 1 km | 2001、2005、2010、2015、2020 | |
人口密度(POP) | 1 km | 2000、2005、2010、2015、2019 | |
地区生产总值(GDP) | 1 km | 2000、2005、2010、2015、2019 | |
夜间灯光强度(NL) | 1 km | 2000、2005、2010、2015、2020 | |
电量消耗(EC) | 1 km | 2000、2005、2010、2015、2019 | |
建设用地面积比例(CLAP) | 30 m | 2000、2005、2010、2015、2020 | |
表5
影响地表温度的人类活动强度指标因素因子探测"
驱动因素 | 影响程度 | ||||
---|---|---|---|---|---|
2000年 | 2005年 | 2010年 | 2015年 | 2020年 | |
人口密度(POP) | 0.2140*** | 0.2936*** | 0.3129*** | 0.2755*** | 0.2436*** |
地区生产总值(GDP) | 0.1121*** | 0.1035*** | 0.1183*** | 0.0515*** | 0.0635*** |
夜间灯光强度(NL) | 0.2330*** | 0.3789*** | 0.3639*** | 0.1768*** | 0.2616*** |
电量消耗(EC) | 0.0547*** | 0.1002*** | 0.0920*** | 0.1151*** | 0.1363*** |
建设用地面积比例(CLAP) | 0.1487*** | 0.2367*** | 0.2120*** | 0.2415*** | 0.2757*** |
[1] | 胡婷, 孙颖. IPCC AR6报告解读: 人类活动对气候系统的影响[J]. 气候变化研究进展, 2021, 17(6): 644-651. |
[Hu Ting, Sun Ying. Interpretation of IPCC AR6 on human influence on the climate system[J]. Climate Change Research, 2021, 17(6): 644-651.] | |
[2] | 孙颖. 人类活动对气候系统的影响——解读IPCC第六次评估报告第一工作组报告第三章[J]. 大气科学学报, 2021, 44(5): 654-657. |
[Sun Ying. Impact of human activities on climate system:An interpretation of Chapter Ⅲ of WGⅠ report of IPCC AR6[J]. Transactions of Atmospheric Sciences, 2021, 44(5): 654-657.] | |
[3] | IPCC. Climate change 2022: Mitigation of climate change[R]. Cambridge: Cambridge University Press, 2022. |
[4] | WMO. WMO statement on the state of the global climate in 2019[EB/OL]. http://library.wmo.int/index.php?lvl=notice_display&id=21700. |
[5] | 秦大河, 张建云, 闪淳昌, 等. 中国极端天与气候事件和灾害风险管理与适应国家评估报告[M]. 北京: 科学出版社, 2015: 1-17. |
[Qin Dahe, Zhang Jianyun, Shan Chunchang, et al. China national assessment report on risk management and adaptation of climate extremes and disasters[M]. Beijing: Science Press, 2015: 1-17.] | |
[6] | 孙邵, 李多, 王遵娅, 等. 2018年全球重大天气气候事件及其成因[J]. 气象, 2019, 45(4): 533-542. |
[Sun Shao, Li Duo, Wang Zunya, et al. Global major weather and climate events in 2018 and the possible causes[J]. Meteorological Monthly, 2019, 45(4): 533-542.] | |
[7] | 赵宗慈, 罗勇, 黄建斌. 回顾IPCC 30年(1988—2018年)[J]. 气候变化研究进展, 2018, 14(5): 540-546. |
[Zhao Zongci, Luo Yong, Huang Jianbin. Review of IPCC 30 years (1988—2018)[J]. Climate Change Research, 2018, 14(5): 540-546.] | |
[8] | 梁媚聪, 秦圆圆, 樊星, 等. IPCC第六次评估报告第三工作组报告主要结论解读及对策建议[J]. 环境保护, 2022, 50(13): 72-76. |
[Liang Meicong, Qin Yuanyuan, Fan Xing, et al. Interpretation of the main conclusions and suggestions of IPCC AR6 Working Group Ⅲ Report[J]. Environmental Protection, 2022, 50(13): 72-76.] | |
[9] |
韩冬锐, 徐新良, 李静, 等. 长江三角洲城市群热环境安全格局及土地利用变化影响研究[J]. 地球信息科学学报, 2017, 19(1): 39-49.
doi: 10.3724/SP.J.1047.2017.00039 |
[Han Dongrui, Xu Xinliang, Li Jing, et al. Study on the security pattern of the heat environment and the influence of land use change in the Yangtze River Delta urban agglomeration[J]. Journal of Geo-information Science, 2017, 19(1): 39-49.] | |
[10] |
沈中健, 曾坚. 闽南三市城镇发展与地表温度的空间关系[J]. 地理学报, 2021, 76(3): 566-583.
doi: 10.11821/dlxb202103006 |
[Shen Zhongjian, Zeng Jian. Spatial relationship of urban development to land surface temperature in three cities of southern Fujian[J]. Acta Geographica Sinica, 2021, 76(3): 566-583.]
doi: 10.11821/dlxb202103006 |
|
[11] | 梁洪武, 阿里木江·卡斯木, 张雪玲, 等. 干旱区绿洲城市群地表温度时空变化及其影响因素——以天山北坡城市群为例[J]. 生态学报, 2023, 43(9): 3650-3664. |
[Liang Hongwu, Kasimu Alimujiang, Zhang Xueling, et al. Spatio-temporal change and influencing factors of land surface temperature in oasis urban agglomeration in arid region: A case study in the urban agglomeration on the northern slope of Tianshan Mountains[J]. Acta Ecologica Sinica, 2023, 43(9): 3650-3664.] | |
[12] | Yao R, Wang L C, Huang X, et al. Temporal trends of surface urban heat islands and associated determinants in major Chinese cities[J]. Science of the Total Environment, 2017, 609: 742-754. |
[13] | 张雪玲, 阿里木江·卡斯木, 梁洪武. 石河子绿洲地表温度时空变化与城镇发展协调性分析[J]. 生态与农村环境学报, 2023, 39(3): 324-334. |
[Zhang Xueling, Kasimu Alimujiang, Liang Hongwu. Coordination analysis of temporal and spatial variation of land surface temperature and urban development in Shihezi Oasis[J]. Journal of Ecology and Rural Environment, 2023, 39(3): 324-334.] | |
[14] | Luyssaert S, Jammet M, Stoy P C, et al. Land management and land-cover change have impacts of similar magnitude on surface temperature[J]. Nature Climate Change, 2014, 4(5): 389-393. |
[15] | Prafull S, Noyingbeni K, Pradipika V. Impact of land use change and urbanization on urban heat island in Lucknow City, Central India: A remote sensing based estimate[J]. Sustainable Cities and Society, 2017(32): 100-114. |
[16] | Ashraf D, Grigory K, Dirk B, et al. Surface urban heat island intensity in five major cities of Bangladesh: Patterns, drivers and trends[J]. Sustainable Cities and Society, 2021(71): 102926, doi: 10.1016/j.scs.2021.102926. |
[17] |
黄晓军, 宋涛, 王博, 等. 土地利用规模-结构-形态演变对城市热环境的影响——以西安市主城区为例[J]. 地理科学, 2022, 42(5): 926-937.
doi: 10.13249/j.cnki.sgs.2022.05.018 |
[Huang Xiaojun, Song Tao, Wang Bo, et al. Study on the influence of land use evolution of scale, structure and pattern on urban thermal environment: A case study of Xi’an[J]. Scientia Geographica Sinica, 2022, 42(5): 926-937.]
doi: 10.13249/j.cnki.sgs.2022.05.018 |
|
[18] | 康利刚, 曹生奎, 曹广超, 等. 青海湖流域地表温度时空变化特征研究[J]. 干旱区地理, 2023, 46(7): 1084-1097. |
[Kang Ligang, Cao Shengkui, Cao Guangchao, et al. Spatiotemporal variation of land surface temperature in Qinghai Lake Basin[J]. Arid Land Geography, 2023, 46(7): 1084-1097.] | |
[19] | 刘宇, 匡耀求, 吴志峰, 等. 不同土地利用类型对城市地表温度的影响——以广东东莞为例[J]. 地理科学, 2006, 26(5): 5597-5602. |
[Liu Yu, Kuang Yaoqiu, Wu Zhifeng, et al. Impact of land use on urban land surface temperature: A case study of Dongguan, Guangdong Province[J]. Scientia Geographica Sinica, 2006, 26(5): 5597-5602.] | |
[20] | 钱乐祥, 丁圣彦. 珠江三角洲土地覆盖变化对地表温度的影响[J]. 地理学报, 2005, 60(5): 761-770. |
[Qian Lexiang, Ding Shengyan. Influence of land cover change on land surface temperature in Zhujiang Delta[J]. Acta Geographica Sinica, 2005, 60(5): 761-770.]
doi: 10.11821/xb200505007 |
|
[21] | 苏伟忠, 杨英宝, 杨桂山. 南京市热场分布特征及其与土地利用/覆被关系研究[J]. 地理科学, 2005, 25(6): 6697-6703. |
[Su Weizhong, Yang Yingbao, Yang Guishan. Distributional characteristics of urban thermal space and relations with land use/cover of Nanjing[J]. Scientia Geographica Sinica, 2005, 25(6): 6697-6703.] | |
[22] | 罗瑶, 彭文甫, 董永波, 等. 基于地理探测器下的川西高原地表温度空间格局及影响因子分析——以西昌市为例[J]. 干旱区地理, 2020, 43(3): 738-749. |
[Luo Yao, Peng Wenfu, Dong Yongbo, et al. Geographical exploration of the spatial pattern of the surface temperature and its influencing factors in western Sichuan Plateau: A case of Xichang City[J]. Arid Land Geography, 2020, 43(3): 738-749.] | |
[23] |
陈泓瑾, 刘琳, 张正勇, 等. 天山北坡人类活动强度与地表温度的时空关联性[J]. 地理学报, 2022, 77(5): 1244-1259.
doi: 10.11821/dlxb202205014 |
[Chen Hongjin, Liu Lin, Zhang Zhengyong, et al. Spatiotemporal correlation between human activity intensity and surface temperature on the north slope of Tianshan Mountains[J]. Acta Geographica Sinica, 2022, 77(5): 1244-1259.]
doi: 10.11821/dlxb202205014 |
|
[24] |
乔治, 贺曈, 卢应爽, 等. 全球气候变化背景下基于土地利用的人类活动对城市热环境变化归因分析——以京津冀城市群为例[J]. 地理研究, 2022, 41(7): 1932-1947.
doi: 10.11821/dlyj020210787 |
[Qiao Zhi, He Tong, Lu Yingshuang, et al. Quantifying the contribution of land use change based on the effects of global climate change and human activities on urban thermal environment in the Beijing-Tianjin-Hebei urban agglomeration[J]. Geographical Research, 2022, 41(7): 1932-1947.]
doi: 10.11821/dlyj020210787 |
|
[25] | Du H Y, Wang D D, Wang Y Y, et al. Influences of land cover types, meteorological conditions, anthropogenic heat and urban area on surface urban heat island in the Yangtze River Delta urban agglomeration[J]. Science of the Total Environment, 2016(571): 461-470. |
[26] |
田浩, 刘琳, 张正勇, 等. 2001—2020年中国地表温度时空分异及归因分析[J]. 地理学报, 2022, 77(7): 1713-1729.
doi: 10.11821/dlxb202207010 |
[Tian Hao, Liu Lin, Zhang Zhengyong, et al. Spatiotemporal diversity and attribution analysis of land surface temperature in China from 2001 to 2020[J]. Acta Geographica Sinica, 2022, 77(7): 1713-1729.]
doi: 10.11821/dlxb202207010 |
|
[27] | 李海军, 高煜, 高鹏. 结合地理探测器的长沙市区地表温度驱动力探究[J]. 测绘与空间地理信息, 2022, 45(11): 78-81, 86. |
[Li Haijun, Gao Yu, Gao Peng. Research on driving force of surface temperature in Changsha City combined with geographic detector[J]. Geomatics & Spatial Information Technology, 2022, 45(11): 78-81, 86.] | |
[28] |
武蓉蓉, 谢苗苗, 刘琦, 等. 大都市功能区块视角下的热岛影响因素空间分异[J]. 资源科学, 2020, 42(12): 2463-2474.
doi: 10.18402/resci.2020.12.16 |
[Wu Rongrong, Xie Miaomiao, Liu Qi, et al. Spatial variability of causative factors of heat islands from the perspective of metropolitan functional blocks[J]. Resources Science, 2020, 42(12): 2463-2474.]
doi: 10.18402/resci.2020.12.16 |
|
[29] |
乔治, 黄宁钰, 徐新良, 等. 2003—2017年北京市地表热力景观时空分异特征及演变规律[J]. 地理学报, 2019, 74(3): 475-489.
doi: 10.11821/dlxb201903006 |
[Qiao Zhi, Huang Ningyu, Xu Xinliang, et al. Spatio-temporal pattern and evolution of the urban thermal landscape in metropolitan Beijing between 2003 and 2017[J]. Acta Geographica Sinica, 2019, 74(3): 475-489.]
doi: 10.11821/dlxb201903006 |
|
[30] | 文英. 人类活动强度定量评价方法的初步探讨[J]. 科学与社会, 1998(4): 56-61. |
[Wen Ying. Preliminary discussion on quantitative evaluation method of human activity intensity[J]. Science and Society, 1998(4): 56-61.] | |
[31] | 郑文武, 邹君, 田亚平, 等. 基于RS和GIS的区域人类活动强度空间模拟[J]. 热带地理, 2011, 31(1): 77-81. |
[Zheng Wenwu, Zou Jun, Tian Yaping, et al. Spatial simulation of human activity intensity based on RS and GIS[J]. Tropical Geography, 2011, 31(1): 77-81.] | |
[32] |
王鹤饶, 郑新奇, 袁涛. DMSP/OLS数据应用研究综述[J]. 地理科学进展, 2012, 31(1): 11-19.
doi: 10.11820/dlkxjz.2012.01.002 |
[Wang Herao, Zheng Xinqi, Yuan Tao. Overview of researches based on DMSP/OLS nighttime light data[J]. Progress in Geography, 2012, 31(1): 11-19.]
doi: 10.11820/dlkxjz.2012.01.002 |
|
[33] | Yang F, Matsushita B, Yang W, et al. Mapping the human footprint from satellite measurements in Japan[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014(88): 80-90. |
[34] | 冯志贤, 张继贤, 侯伟, 等. 基于地表覆盖分类的生态环境人为干扰度分析——以北京市为例[J]. 生态学杂志, 2017, 36(2): 508-516. |
[Feng Zhixian, Zhang Jixian, Hou Wei, et al. Dynamic changes of hemeroby degree based on the land cover classification: A case study in Beijing[J]. Chinese Journal of Ecology, 2017, 36(2): 508-516.] | |
[35] | 黄创绵, 蔡汝山. 单因素方差分析方法在环境试验中的应用[J]. 电子产品可靠性与环境试验, 2010, 28(6): 21-26. |
[Huang Chuangmian, Cai Rushan. Application of one-way ANOVA in environmental tests[J]. Electronic Product Reliability and Environmental Testing, 2010, 28(6): 21-26.] | |
[36] |
王劲峰, 徐成东. 地理探测器: 原理与展望[J]. 地理学报, 2017, 72(1): 116-134.
doi: 10.11821/dlxb201701010 |
[Wang Jinfeng, Xu Chengdong. Geodetector: Principle and prospective[J]. Acta Geographica Sinica, 2017, 72(1): 116-134.]
doi: 10.11821/dlxb201701010 |
|
[37] | 徐新良. 中国地表温度LST年度1 KM数据集[DB/OL]. [2023-02-19]. 中国科学院资源环境科学数据中心数据注册与出版系统. https://www.resdc.cn/DOI/DOI.aspx?DOIID=98. |
[Xu Xinliang. et al. China surface temperature LST annual 1 KM data set[DB/OL]. [2023-02-19]. Data Registration and Publication System of Data Center of Resources and Environmental Sciences, Chinese Academy of Sciences. https://www.resdc.cn/DOI/DOI.aspx?DOIID=98.] | |
[38] | 徐新良. 中国人口空间分布公里网格数据集[DB/OL]. [2023-02-20]. 中国科学院资源环境科学数据中心数据注册与出版系统. https://www.resdc.cn/DOI/DOI.aspx?DOIID=32. |
[Xu Xinliang. et al. China population spatial distribution kilometer grid dataset[DB/OL]. [2023-02-20]. Data Registration and Publication System of Data Center of Resources and Environmental Sciences, Chinese Academy of Sciences. https://www.resdc.cn/DOI/DOI.aspx?DOIID=32.] | |
[39] | 徐新良. 中国GDP空间分布公里网格数据集[DB/OL]. [2023-02-21]. 中国科学院资源环境科学数据中心数据注册与出版系统. https://www.resdc.cn/DOI/DOI.aspx?DOIID=33. |
[Xu Xinliang. et al. China GDP spatial distribution kilometer grid data set[DB/OL]. [2023-02-21]. Data Registration and Publication System of Data Center of Resources and Environmental Sciences, Chinese Academy of Sciences. https://www.resdc.cn/DOI/DOI.aspx?DOIID=33.] | |
[40] | Wu Y Z, Shi K F, Chen Z Q, et al. Developing improved time-series DMSP-OLS-like data (1992—2019) in China by integrating DMSP-OLS and SNPP-VIIRS[J]. IEEE Transactions on Geoscience & Remote Sensing, 2022, 60: 1-14. |
[41] | Chen J D, Gao M, Cheng S L, et al. Global 1 km × 1 km gridded revised real gross domestic product and electricity consumption during 1992—2019 based on calibrated nighttime light data[J]. Scientific Data, 2022, 9(1): 202, doi: 10.1038/s41597-022-01322-5. |
[42] | 徐新良, 刘纪远, 张树文, 等. 中国多时期土地利用土地覆被遥感监测数据集(CNLUCC)[DB/OL]. [2023-02-20]. 中国科学院资源环境科学数据中心数据注册与出版系统. https://www.resdc.cn/DOI/DOI.aspx?DOIID=54. |
[Xu Xinliang, Liu Jiyuan, Zhang Shuwen, et al. Remote sensing monitoring data set of landcover for land use in multiple periods of China (CNLUCC)[DB/OL]. [2022-02-20]. Data Registration and Publication System of Data Center of Resources and Environmental Sciences, Chinese Academy of Sciences. https://www.resdc.cn/DOI/DOI.aspx?DOIID=54.] | |
[43] | 韩贵锋, 赵珂, 颜文涛, 等. 快速城市化山地城市地表温度的多维梯度——以重庆市主城区为例[J]. 应用生态学报, 2012, 23(6): 1655-1662. |
[Han Guifeng, Zhao Ke, Yan Wentao, et al. Multi-gradients of land surface temperature in mountainous cities with rapid urbanization: A case study in central area of Chongqing City[J]. Chinese Journal of Applied Ecology, 2012, 23(6): 1655-1662.]
pmid: 22937657 |
|
[44] |
杨智威, 陈颖彪, 吴志峰, 等. 粤港澳大湾区城市热岛空间格局及影响因子多元建模[J]. 资源科学, 2019, 41(6): 1154-1166.
doi: 10.18402/resci.2019.06.14 |
[Yang Zhiwei, Chen Yingbiao, Wu Zhifeng, et al. Spatial pattern of urban heat island and multivariate modeling of impact factors in the Guangdong-Hong Kong-Macao Greater Bay area[J]. Resoures Science, 2019, 41(6): 1154-1166.] | |
[45] | 王莹书, 石培基, 赵武生, 等. 兰州市热环境时空特征及影响因素研究[J]. 生态科学, 2022, 41(2): 59-65. |
[Wang Yingshu, Shi Peiji, Zhao Wusheng, et al. Spatial-temporal characteristics and influencing factors of thermal environment in Lanzhou[J]. Ecological Science, 2022, 41(2): 59-65.] |
[1] | 唐太斌, 周保, 金晓媚, 魏赛拉加, 马涛, 张永艳. 黄河源区夏季地表温度变化研究[J]. 干旱区地理, 2023, 46(8): 1250-1259. |
[2] | 宁静, 朱冉, 张馨元, 陈凯. 内蒙古区县城市韧性评价与分析[J]. 干旱区地理, 2023, 46(7): 1217-1226. |
[3] | 康利刚, 曹生奎, 曹广超, 严莉, 陈链璇, 李文斌, 赵浩然. 青海湖流域地表温度时空变化特征研究[J]. 干旱区地理, 2023, 46(7): 1084-1097. |
[4] | 张博,李雪梅,秦启勇,李超,孙天瑶. 中国天山积雪垂直分布异质性研究[J]. 干旱区地理, 2022, 45(3): 754-762. |
[5] | 程丹妮,王颖琪,程勇翔,黄敬峰. 新疆典型沙漠和绿洲植被-水汽-地表温度相关性分析[J]. 干旱区地理, 2022, 45(2): 456-466. |
[6] | 王丽平,段四波,张霄羽,于艳茹. 2003-2018年中国地表温度年最大值的时空分布及变化特征[J]. 干旱区地理, 2021, 44(5): 1299-1308. |
[7] | 安彬,肖薇薇,张淑兰,朱妮,张建东. 1960—2017年黄土高原地表温度时空变化特征[J]. 干旱区地理, 2021, 44(3): 778-785. |
[8] | 张晓东, 赵银鑫, 武 丹, 褚小东, 吴文忠, 张 勇, 刘乃静, 李 艳 . 基于遥感的银川市建成区城市扩展及其热环境变化分析[J]. 干旱区地理, 2020, 43(5): 1278-1288. |
[9] | 罗瑶, 彭文甫, 董永波, 罗艳玫, 张冬梅. 基于地理探测器下的川西高原地表温度空间格局及影响因子分析——以西昌市为例[J]. 干旱区地理, 2020, 43(3): 738-749. |
[10] | 韩群柱, 冯起, 高海东, 陈桂萍. 基于主成分分析的关中地区农业粮食生产变化的影响因素研究[J]. 干旱区地理, 2020, 43(2): 474-480. |
[11] | 王晨光, 段四波, 张霄羽, 冷佩, 高懋芳, 李召良. NPP-VIIRS热红外数据地表温度反演方法研究[J]. 干旱区地理, 2017, 40(6): 1264-1273. |
[12] | 李净, 黄康刚. 基于MODIS日地表温度产品的兰州市热岛效应特征[J]. 干旱区地理, 2017, 40(6): 1235-1240. |
[13] | 胡琳, 王琦, 张文静, 陈建文, 曹红丽. 关中地区低能见度事件变化特征分析[J]. 干旱区地理, 2016, 39(1): 41-46. |
[14] | 何建村, 白云岗, 张严俊. 基于MODIS数据新疆土壤干旱特征分析[J]. 干旱区地理, 2015, 38(4): 735-742. |
|