[1] |
白洁, 陈曦, 李均力, 等. 1975—2007年中亚干旱区内陆湖泊面积变化遥感分析[J]. 湖泊科学, 2011, 23(1): 80-88.
|
|
[Bai Jie, Chen Xi, Li Junli, et al. Changes of inland lake area in arid Central Asia during 1975—2007: A remote-sensing analysis[J]. Journal of Lake Sciences, 2011, 23(1): 80-88.]
|
[2] |
杨桂山, 马荣华, 张路, 等. 中国湖泊现状及面临的重大问题与保护策略[J]. 湖泊科学, 2010, 22(6): 799-810.
|
|
[Yang Guishan, Ma Ronghua, Zhang Lu, et al. Lake status, major problems and protection strategy in China[J]. Journal of Lake Sciences, 2010, 22(6): 799-810.]
|
[3] |
Heino J, Alahuhta J, Bini L M, et al. Lakes in the era of global change: Moving beyond single-lake thinking in maintaining biodiversity and ecosystem services[J]. Biological Reviews, 2021, 96(1): 89-106.
|
[4] |
韩飞, 刘铁, 黄粤, 等. 高山湖泊生态系统气候响应研究进展[J]. 干旱区地理, 2023, 46(2): 233-242.
doi: 10.12118/j.issn.1000-6060.2022.200
|
|
[Han Fei, Liu Tie, Huang Yue, et al. Advance in the studies of responses of alpine lakes to climate change[J]. Arid Land Geography, 2023, 46(2): 233-242.]
doi: 10.12118/j.issn.1000-6060.2022.200
|
[5] |
Yan L J, Zheng M P. Influence of climate change on saline lakes of the Tibet Plateau, 1973—2010[J]. Geomorphology, 2015, 246: 68-78.
|
[6] |
李均力, 陈曦, 包安明. 2003—2009年中亚地区湖泊水位变化的时空特征[J]. 地理学报, 2011, 66(9): 1219-1229.
|
|
[Li Junli, Chen Xi, Bao Anming. Spatial-temporal characteristics of lake level changes in Central Asia during 2003—2009[J]. Acta Geographica Sinica, 2011, 66(9): 1219-1229.]
|
[7] |
郭清, 王兴泽. 超声波水位测量系统[J]. 东北水利水电, 1999(2): 39-40, 16, 49.
|
|
[Guo Qing, Wang Xingze. Water level measure system by ultrasonic wave[J]. Water Resources & Hydropower of northeast China, 1999(2): 39-40, 16, 49.]
|
[8] |
赵建虎, 周丰年, 张红梅. 船载GPS水位测量方法研究[J]. 测绘通报, 2001(增刊1): 1-3.
|
|
[Zhao Jianhu, Zhou Fengnian, Zhang Hongmei. Research on method of determining tide on water with GPS[J]. Bulletin of Surveying and Mapping, 2001(Suppl. 1): 1-3.]
|
[9] |
李振南, 雷伟伟, 王一帆, 等. 基于多源卫星测高数据的青海湖水位变化研究[J]. 测绘科学, 2023, 48(5): 140-151.
|
|
[Li Zhennan, Lei Weiwei, Wang Yifan, et al. Water level variation of Qinghai Hu based on multi-source satellite altimetry data[J]. Science of Surveying and Mapping, 2023, 48(5): 140-151.]
|
[10] |
刘军彦, 王世杰. 基于ICESat-2卫星测高数据的呼伦湖水位变化监测[J]. 干旱区研究, 2023, 40(9): 1438-1445.
doi: 10.13866/j.azr.2023.09.07
|
|
[Liu Junyan, Wang Shijie. Monitoring of water level change in Hulun Lake based on ICESat-2 satellite altimetry data[J]. Arid Zone Research, 2023, 40(9): 1438-1445.]
doi: 10.13866/j.azr.2023.09.07
|
[11] |
唐新明, 李国元. 激光测高卫星的发展与展望[J]. 国际太空, 2017(11): 13-18.
|
|
[Tang Xinming, Li Guoyuan. Development and prospect of laser altimetry satellite[J]. Space International, 2017(11): 13-18.]
|
[12] |
Jiang L G, Nielsen K, Andersen O B. Improvements in mountain lake monitoring from satellite altimetry over the past 30 years-lessons learned from Tibetan lakes[J]. Remote Sensing of Environment, 2023, 295: 113702, doi: 10.1016/j.rse.2023.113702.
|
[13] |
Xu F L, Zhang G Q, Yi S, et al. Seasonal trends and cycles of lake-level variations over the Tibetan Plateau using multi-sensor altimetry data[J]. Journal of Hydrology, 2022, 604: 127251, doi: 10.1016/j.jhydrol.2021.127251.
|
[14] |
田时岳, 王昶, 何佳洋, 等. 基于ICESat-2激光测高数据的鄱阳湖水位序列构建及水位预测[J]. 测绘科学, 2023, 48(12): 105-114.
|
|
[Tian Shiyue, Wang Chang, He Jiayang, et al. Water level sequence construction and water level prediction of Poyang Lake based on ICESat-2 laser altimetry data[J]. Science of Surveying and Mapping, 2023, 48(12): 105-114.]
|
[15] |
高晓宇, 郝海超, 张雪琪, 等. 中国西北干旱区植被水分利用效率变化对气象要素的响应——以新疆为例[J]. 干旱区地理, 2023, 46(7): 1111-1120.
doi: 10.12118/j.issn.1000-6060.2022.545
|
|
[Gao Xiaoyu, Hao Haichao, Zhang Xueqi, et al. Responses of vegetation water use efficiency to meteorological factors in arid areas of northwest China: A case of Xinjiang[J]. Arid Land Geography, 2023, 46(7): 1111-1120.]
doi: 10.12118/j.issn.1000-6060.2022.545
|
[16] |
张元梅, 孙桂丽, 鲁艳, 等. 昆仑山北坡两种优势荒漠灌木的生物量预测模型[J]. 干旱区研究, 2024, 41(2): 284-292.
doi: 10.13866/j.azr.2024.02.11
|
|
[Zhang Yuanmei, Sun Guili, Lu Yan, et al. Biomass estimation models for two dominant desert shrubs on the northern slopes of Kunlun Mountain[J]. Arid Land Geography, 2024, 41(2): 284-292.]
|
[17] |
Li X D, Long D, Huang Q, et al. High-temporal-resolution water level and storage change data sets for lakes on the Tibetan Plateau during 2000—2017 using multiple altimetric missions and Landsat-derived lake shoreline positions[J]. Earth System Science Data, 2019, 11(4): 1603-1627.
|
[18] |
袁康, 谭德宝, 文雄飞, 等. 库赛湖水位动态监测及气候要素分析[J]. 长江科学院院报, 2022, 39(2): 153-158.
doi: 10.11988/ckyyb.20201126
|
|
[Yuan Kang, Tan Debao, Wen Xiong fei, et al. Dynamic monitoring of water level change in Kusai Lake and analysis of climatic driving forces[J]. Journal of Changjiang River Scientific Research Institute, 2022, 39(2): 153-158.]
|
[19] |
彭海月. 青藏高原湖泊水位序列构建与变化分析[D]. 西宁: 青海大学, 2022.
|
|
[Peng Haiyue. Construction and variation analysis of lake water level series in Qinghai-Tibet Plateau[D]. Xining: Qinghai University, 2022.]
|
[20] |
陈健茹, 徐佳, 王冬梅. 基于多源卫星数据的高邮湖长时序水位变化监测[J]. 人民长江, 2024, 55(1): 120-126.
|
|
[Chen Jianru, Xu Jia, Wang Dongmei. Long time series monitoring of water level change in Gaoyou Lake based on multi-source satellite data[J]. Yangtze River, 2024, 55(1): 120-126.]
|
[21] |
廖静娟, 赵云, 陈嘉明. 基于多源雷达高度计数据的高亚洲湖泊水位变化数据集[J]. 中国科学数据, 2020, 5(1): 140-151.
|
|
[Liao Jingjuan, Zhao Yun, Chen Jiaming. A dataset of lake level changes in High Mountain Asia using multi-altimeter data[J]. China Scientific Data, 2020, 5(1): 140-151.]
|
[22] |
段伟利, 邹珊, 陈亚宁, 等. 1879—2015年巴尔喀什湖水位变化及其主要影响因素分析[J]. 地球科学进展, 2021, 36(9): 950-961.
doi: 10.11867/j.issn.1001-8166.2021.088
|
|
[Duan Weili, Zou Shan, Chen Yaning, et al. Analysis of water level changes in Lake Balkhash and its main influencing factors during 1879—2015[J]. Advances in Earth Science, 2021, 36(9): 950-961.]
doi: 10.11867/j.issn.1001-8166.2021.088
|
[23] |
李想, 张雪芹, 徐晓明. 近40年来贝加尔湖区气候变化及其对湖泊水位的影响[J]. 湖泊科学, 2022, 34(1): 219-231.
|
|
[Li Xiang, Zhang Xueqin, Xu Xiaoming. Climate change and its effects on the water level of Lake Baikal region since the 1980s[J]. Journal of Lake Sciences, 2022, 34(1): 219-231.]
|
[24] |
Cohen I, Huang Y, Chen J, et al. Pearson correlation coefficient[J]. Noise Reduction in Speech Processing, 2009: 1-4, doi:10.1007/978-3-642-00296-0_5.
|
[25] |
Zhang Q F, Chen Y N, Li Z, et al. Why are glacial lakes in the eastern Tianshan Mountains expanding at an accelerated rate?[J]. Journal of Geographical Sciences, 2023, 33(1): 121-150.
doi: 10.1007/s11442-023-2076-z
|
[26] |
陈亚宁, 李稚, 方功焕, 等. 气候变化对中亚天山山区水资源影响研究[J]. 地理学报, 2017, 72(1): 18-26.
doi: 10.11821/dlxb201701002
|
|
[Chen Yaning, Li Zhi, Fang Gonghuan, et al. Impact of climate change on water resources in the Tianshan Mountians, Central Asia[J]. Acta Geographica Sinica, 2017, 72(1): 18-26.]
doi: 10.11821/dlxb201701002
|
[27] |
姚檀栋, 刘时银, 蒲健辰, 等. 高亚洲冰川的近期退缩及其对西北水资源的影响[J]. 中国科学(地球科学), 2004, 34(6): 535-543.
|
|
[Yao Tandong, Liu Shiyin, Pu Jianchen, et al. Recent retreat of high Asian glaciers and its impact on water resources in northwest China[J]. Scientia Sinica (Terrae), 2004, 34(6): 535-543.]
|
[28] |
李晓锋, 姚晓军, 孙美平, 等. 2000—2014年我国西北地区湖泊面积的时空变化[J]. 生态学报, 2018, 38(1): 96-104.
|
|
[Li Xiaofeng, Yao Xiaojun, Sun Meiping, et al. Spatial-temporal variations in lakes in northwest China from 2000 to 2014[J]. Acta Ecologica Sinica, 2018, 38(1): 96-104.]
|
[29] |
马山木, 甘甫平, 吴怀春, 等. ICESat-2数据监测青藏高原湖泊2018—2021年水位变化[J]. 自然资源遥感, 2022, 34(3): 164-172.
|
|
[Ma Shanmu, Gan Fuping, Wu Huaichun, et al. ICESat-2 data-based monitoring of 2018—2021 variations in the water levels of lakes in the Qinghai-Tibet Plateau[J]. Remote Sensing for Natural Resources, 2022, 34(3): 164-172.]
|
[30] |
江远安, 刘精, 邵伟玲, 等. 1961—2013年新疆不同时间尺度降水量的气候特征及其历史演变规律[J]. 冰川冻土, 2014, 36(6): 1363-1375.
doi: 10.7522/j.issn.1000-0240.2014.0163
|
|
[Jiang Yuanan, Liu Jing, Shao Weiling, et al. Climatic characteristics and historical evolution of precipitation in different time scales in Xinjiang from 1961 to 2013[J]. Journal of Glaciology and Geocryology, 2014, 36(6): 1363-1375.]
doi: 10.7522/j.issn.1000-0240.2014.0163
|
[31] |
Wang Y T, Hou S G, Huai B J, et al. Glacier anomaly over the western Kunlun Mountains, northwestern Tibetan Plateau, since the 1970s[J]. Journal of Glaciology, 2018, 64(246): 624-636.
|