干旱区地理 ›› 2024, Vol. 47 ›› Issue (9): 1518-1529.doi: 10.12118/j.issn.1000-6060.2023.595
收稿日期:
2023-10-23
修回日期:
2024-01-03
出版日期:
2024-09-25
发布日期:
2024-09-24
通讯作者:
别强(1986-),男,博士,副教授,主要从事遥感信息提取研究. E-mail: bieq@lzjtu.edu.cn作者简介:
石莹(1998-),女,硕士研究生,主要从事干旱区生态研究. E-mail: 11220886@stu.lzjtu.edu.cn
基金资助:
SHI Ying1(), BIE Qiang1,2,3(), SU Xiaojie1, LI Xinzhang1
Received:
2023-10-23
Revised:
2024-01-03
Published:
2024-09-25
Online:
2024-09-24
摘要:
“四水四定”背景下,科学地量化评估水源涵养能力是保障社会经济高质量发展和对生态环境有效保护的基础。生态保护重要性评价作为“双评价”重要组成部分,对农业生产和城市建设等评价起指导作用。基于InVEST产水量模块利用地形指数、土壤饱和导水率和流速系数对其修正获得水源涵养量,定量评估2000—2020年兰州市水源涵养量时空演变,探讨土地利用类型变化对其影响,并划分水源涵养功能重要性等级。结果表明:(1) 2000—2020年兰州市农田面积减少,其他土地利用类型面积均增加,其中草地增加最显著。(2) 兰州市水源涵养量空间上呈现“高低相间分布”,多年平均单元水源涵养量15.42 mm,水源涵养总量2.03×108 m3。2000—2020年兰州市平均单元水源涵养量和总量增加,且增加幅度逐渐上升。(3) 兰州市不同土地利用类型水源涵养总量依次为:草地>农田>林地>不透水面>裸地>灌木。其中,林地的平均单元水源涵养量最大,而草地的水源涵养总量最大。(4) 2000—2020年兰州市水源涵养功能重要性一般重要和较重要地区面积减少,中度重要、高度重要和极重要地区面积增加。水源涵养功能评价和重要性分级可以为中国干旱区巩固现有退耕还林还草成果、推进生态文明建设、促进区域经济发展提供科学参考与指导。
石莹, 别强, 苏晓杰, 李欣璋. 基于InVEST模型的水源涵养功能评价的时空变化——以兰州市为例[J]. 干旱区地理, 2024, 47(9): 1518-1529.
SHI Ying, BIE Qiang, SU Xiaojie, LI Xinzhang. Spatiotemporal variation of water conservation function evaluation based on InVEST model: A case of Lanzhou City[J]. Arid Land Geography, 2024, 47(9): 1518-1529.
表2
2000—2020年各土地利用类型面积和占比"
土地利用类型 | 2000年 | 2010年 | 2020年 | 2000—2020年 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
面积/km2 | 占比/% | 面积/km2 | 占比/% | 面积/km2 | 占比/% | 面积/km2 | 占比/% | ||||
农田 | 2278.79 | 17.27 | 1719.73 | 13.03 | 1837.46 | 13.92 | -441.34 | 50.00 | |||
林地 | 484.57 | 3.67 | 498.47 | 3.78 | 536.48 | 4.07 | 51.91 | 5.88 | |||
灌木 | 11.79 | 0.09 | 6.33 | 0.05 | 21.74 | 0.16 | 9.96 | 1.13 | |||
草地 | 10245.03 | 77.65 | 10746.78 | 81.46 | 10459.03 | 79.28 | 214.00 | 24.24 | |||
水域 | 28.02 | 0.21 | 30.12 | 0.23 | 31.32 | 0.24 | 3.30 | 0.37 | |||
裸地 | 24.52 | 0.19 | 41.15 | 0.31 | 138.19 | 1.05 | 113.67 | 12.88 | |||
不透水面 | 120.49 | 0.91 | 150.63 | 1.14 | 168.99 | 1.28 | 48.50 | 5.49 |
表3
2000—2020年各土地利用类型平均单元水源涵养量及总量"
土地利用类型 | 平均单元水源涵养量/mm | 水源涵养总量/106 m3 | |||||
---|---|---|---|---|---|---|---|
2000年 | 2010年 | 2020年 | 2000年 | 2010年 | 2020年 | ||
农田 | 15.68 | 17.93 | 20.25 | 35.73 | 30.83 | 37.21 | |
林地 | 26.92 | 28.78 | 32.41 | 13.05 | 14.35 | 17.38 | |
灌木 | 21.33 | 23.92 | 27.37 | 0.30 | 0.15 | 0.60 | |
草地 | 12.94 | 14.04 | 15.97 | 132.57 | 150.83 | 166.98 | |
裸地 | 12.16 | 13.17 | 14.68 | 0.30 | 0.54 | 2.03 | |
不透水面 | 10.55 | 10.59 | 13.40 | 1.27 | 1.60 | 2.26 |
表4
2000—2020年水源涵养重要性面积和占比"
重要性分级 | 2000年 | 2010年 | 2020年 | 2000—2020年 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
面积/km2 | 占比/% | 面积/km2 | 占比/% | 面积/km2 | 占比/% | 面积/km2 | 占比/% | ||||
一般重要 | 4475.44 | 34.45 | 3232.81 | 24.89 | 1649.32 | 12.70 | -2826.11 | 43.50 | |||
较重要 | 3082.93 | 23.73 | 3174.41 | 24.44 | 2660.58 | 20.48 | -422.35 | 6.50 | |||
中度重要 | 1781.69 | 13.71 | 2390.08 | 18.40 | 2826.35 | 21.76 | 1044.66 | 16.08 | |||
高度重要 | 1014.65 | 7.81 | 1234.51 | 9.50 | 2167.93 | 16.69 | 1153.28 | 17.75 | |||
极重要 | 2636.21 | 20.29 | 2958.53 | 22.77 | 3686.70 | 28.38 | 1050.49 | 16.17 |
[1] |
傅伯杰, 周国逸, 白永飞, 等. 中国主要陆地生态系统服务功能与生态安全[J]. 地球科学进展, 2009, 24(6): 571-576.
doi: 10.11867/j.issn.1001-8166.2009.06.0571 |
[Fu Bojie, Zhou Guoyi, Bai Yongfei, et al. The main terrestrial ecosystem services and ecological security in China[J]. Advances in Earth Science, 2009, 24(6): 571-576.]
doi: 10.11867/j.issn.1001-8166.2009.06.0571 |
|
[2] | 王云飞, 叶爱中, 乔飞, 等. 水源涵养内涵及估算方法综述[J]. 南水北调与水利科技, 2021, 19(6): 1041-1071. |
[Wang Yunfei, Ye Aizhong, Qiao Fei, et al. Review on connotation and estimation method of water conservation[J]. South-to-North Water Transfers and Water Science & Technology, 2021, 19(6): 1041-1071.] | |
[3] | 熊善高, 秦昌波, 于雷, 等. 基于生态系统服务功能和生态敏感性的生态空间划定研究——以南宁市为例[J]. 生态学报, 2018, 38(22): 7899-7911. |
[Xiong Shangao, Qin Changbo, Yu Lei, et al. Methods to identify the boundary of ecological space based on ecosystem service functions and ecological sensitivity: A case study of Nanning City[J]. Acta Ecologica Sinica, 2018, 38(22): 7899-7911.] | |
[4] | 吕一河, 张立伟, 王江磊. 生态系统及其服务保护评估:指标与方法[J]. 应用生态学报, 2013, 24(5): 1237-1243. |
[Lü Yihe, Zhang Liwei, Wang Jianglei. Assessment of ecosystem and its services conservation: Indicators and methods[J]. Chinese Journal of Applies Ecology, 2013, 24(5): 1237-1243.] | |
[5] |
刘亦晟, 侯鹏, 王平, 等. 生态系统水源涵养服务功能定量评估方法研究进展[J]. 应用生态学报, 2024, 35(1): 275-288.
doi: 10.13287/j.1001-9332.202401.022 |
[Liu Yisheng, Hou Peng, Wang Ping, et al. Research advance on quantitative assessment methods of ecosystem water conservation service functions[J]. Chinese Journal of Applies Ecology, 2024, 35(1): 275-288.] | |
[6] | 侯笑云, 刘世梁, 成方妍, 等. 生态保护红线划定中生物多样性重要性评价的不同方法对比研究[J]. 科研信息化技术与应用, 2017, 8(3): 79-88. |
[Hou Xiaoyun, Liu Shiliang, Cheng Fangyan, et al. A comparative study on different methods of evaluating the importance of biodiversity in ecological protection redline delineation[J]. E-Science Technology & Application, 2017, 8(3): 79-88.] | |
[7] | 李辉, 王福海, 罗胤晨. 基于NPP的重庆市“一圈两群”生态系统服务重要性评价及其机理研究[J]. 生态科学, 2021, 40(3): 64-73. |
[Li Hui, Wang Fuhai, Luo Yinchen. Research on the essential evaluation and mechanism of “One circle, Two groups” ecosystem services in Chongqing based on NPP quantitative index evaluation method[J]. Ecological Science, 2021, 40(3): 64-73.] | |
[8] | Liu S R, Chang J G, Sun P S. Forest hydrology: Forest and water in a context of global change[J]. Chinese Journal of Plant Ecology, 2007, 31(5): 753-756. |
[9] |
杨晓霞, 赵锦梅, 张雪, 等. 祁连山东段山地典型灌丛枯落物及土壤水源涵养功能研究[J]. 干旱区地理, 2022, 45(1): 197-207.
doi: 10.12118/j.issn.1000–6060.2021.166 |
[Yang Xiaoxia, Zhao Jinmei, Zhang Xue, et al. Litter and soil water conservation function of typical shrubs in eastern Qilian Mountains[J]. Arid Land Geography, 2022, 45(1): 197-207.]
doi: 10.12118/j.issn.1000–6060.2021.166 |
|
[10] | 贾雨凡, 杨勤丽, 胡非池, 等. 变化环境下的水源涵养能力评估研究进展[J]. 水利水运工程学报, 2022(1): 37-47. |
[Jia Yufan, Yang Qinli, Hu Feichi, et al. Prospect and progress of water conservation capacity evaluation in a changing environment[J]. Hydro-Science and Engineering, 2022(1): 37-47.] | |
[11] | 余恩旭, 张明芳, 徐亚莉, 等. 区域森林水源涵养功能评价模型的开发与应用[J]. 中国水土保持科学, 2023, 21(1): 119-127. |
[Yu Enxu, Zhang Mingfang, Xu Yali, et al. Development and application of a regional forest water conservation function assessment tool[J]. Science of Soil and Water Conservation, 2023, 21(1): 119-127.] | |
[12] | 曹飞, 肖如林, 付卓, 等. 江西省水源涵养量动态变化遥感监测与分析[J]. 环境与可持续发展, 2016, 41(6): 210-212. |
[Cao Fei, Xiao Rulin, Fu Zhuo, et al. A study on dynamic change of water conservation in Jiangxi Province based on remote sensing monitoring[J]. Environment and Sustainable Development, 2016, 41(6): 210-212.] | |
[13] | 肖寒, 欧阳志云, 赵景柱, 等. 森林生态系统服务功能及其生态经济价值评估初探——以海南岛尖峰岭热带森林为例[J]. 应用生态学报, 2000, 11(4): 481-484. |
[Xiao Han, Ouyang Zhiyun, Zhao Jingzhu, et al. Forest ecosystem services and their ecological valuation: A case study of tropical forest in Jianfengling of Hainan Island[J]. Chinese Journal of Applies Ecology, 2000, 11(4): 481-484.] | |
[14] | 侯元兆, 张颖, 曹克瑜. 森林资源核算(上卷)[M]. 北京: 中国科学技术出版社, 2005. |
[Hou Yuanzhao, Zhang Ying, Cao Keyu. Accounting for forest resources (Volume Ⅰ)[M]. Beijing: China Science and Technology Press, 2005.] | |
[15] |
Zhang M F, Wei X H. Deforestation, forestation, and water supply[J]. Science, 2021, 371(6533): 990-991.
doi: 10.1126/science.abe7821 pmid: 33674479 |
[16] | 王辉源, 宋进喜, 吴琼. 未来气候及土地利用变化对水源涵养量的影响[J]. 水土保持学报, 2023, 37(5): 226-234. |
[Wang Huiyuan, Song Jinxi, Wu Qiong. Influence of future climate and land use changes on water conservation[J]. Journal of Soil and Water Conservation, 2023, 37(5): 226-234.] | |
[17] |
王秀君, 陈健. 基于LST-EVI特征空间的土壤水分含量反演[J]. 遥感技术与应用, 2014, 29(1): 46-53.
doi: 10.11873/j.issn.1004-0323.2014.1.0046 |
[Wang Xiujun, Chen Jian. Soil moisture estimation based on the LST-EVI feature space[J]. Remote Sensing Technology and Application, 2014, 29(1): 46-53.] | |
[18] | 吴艾璞, 王晓燕, 黄洁钰, 等. 基于前期雨量和降雨历时的SCS-CN模型改进[J]. 农业工程学报, 2021, 37(22): 85-94. |
[Wu Aipu, Wang Xiaoyan, Huang jieyu, et al. Improvement of SCS-CN model based on antecedent precipitation and rainfall duration[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(22): 85-94.] | |
[19] | 高超, 陆苗, 姚梦婷, 等. SWIM水文模型在王家坝地区的适用性评估[J]. 水土保持通报, 2018, 38(1): 152-159. |
[Gao Chao, Lu Miao, Yao Mengting, et al. Applicability evaluation of the SWIM hydrological model in Wangjiaba region of China[J]. Bulletin of Soil and Water Conservation, 2018, 38(1): 152-159.] | |
[20] | 程唱, 贺康宁, 俞国峰, 等. 干旱半干旱区不同林型人工林水源涵养能力比较研究[J]. 生态学报, 2021, 41(5): 1979-1990. |
[Cheng Chang, He Kangning, Yu Guofeng, et al. Comparative study on water conservation capacity of different forest types of artificial forest in arid and semi-arid area[J]. Acta Ecologica Sinica, 2021, 41(5): 1979-1990.] | |
[21] | 张庆费, 周晓峰. 黑龙江省汤旺河和呼兰河流域森林对河川年径流量的影响[J]. 植物资源与环境, 1999, 8(1): 23-28. |
[Zhang Qingfei, Zhou Xiaofeng. Influence of forest on runoff discharges in Tangwang River and Hulan River basins of Heilongjiang Province[J]. Journal of Plant Resources and Environment, 1999, 8(1): 23-28.] | |
[22] | 李屹峰, 罗跃初, 刘纲, 等. 土地利用变化对生态系统服务功能的影响——以密云水库流域为例[J]. 生态学报, 2013, 33(3): 726-736. |
[Li Yifeng, Luo Yuechu, Liu Gang, et al. Effects of land use change on ecosystem services: A case study in Miyun Reservoir Watershed[J]. Acta Ecologica Sinica, 2013, 33(3): 726-736.] | |
[23] |
袁宏伟, 蔡俊, 章磊. 国家重点生态功能区人类活动与生境质量时空变化特征及空间效应[J]. 干旱区地理, 2023, 46(6): 934-948.
doi: 10.12118/j.issn.1000-6060.2022.282 |
[Yuan Hongwei, Cai Jun, Zhang Lei, et al. Temporal and spatial changes of human activities and habitat quality in national key ecological function areas and their spatial effects[J]. Arid Land Geography, 2023, 46(6): 934-948.]
doi: 10.12118/j.issn.1000-6060.2022.282 |
|
[24] |
包玉斌, 李婷, 柳辉, 等. 基于InVEST模型的陕北黄土高原水源涵养功能时空变化[J]. 地理研究, 2016, 35(4): 664-676.
doi: 10.11821/dlyj201604006 |
[Bao Yubin, Li Ting, Liu Hui, et al. Spatial and temporal changes of water conservation of Loess Plateau in northern Shaanxi Province by InVEST model[J]. Geographical Research, 2016, 35(4): 664-676.] | |
[25] |
王小辣, 段凯, 韦林. 基于WaSSI模型的珠江流域水-碳耦合模拟[J]. 应用生态学报, 2022, 33(5): 1377-1386.
doi: 10.13287/j.1001-9332.202205.022 |
[Wang Xiaola, Duan Kai, Wei Lin. Simulation of water and carbon coupling of the Pearl River Basin based on the WaSSI model[J]. Chinese Journal of Applied Ecology, 2022, 33(5): 1377-1386.]
doi: 10.13287/j.1001-9332.202205.022 |
|
[26] | 崔越, 张利华, 吴宗钒, 等. 基于BEPS-Terrainlab v2.0模型鄂西犟河流域1999—2016年蒸散发模拟分析[J]. 华中师范大学学报(自然科学版), 2020, 54(1): 140-148. |
[Cui Yue, Zhang Lihua, Wu Zongfan, et al. Simulation and analysis of evapotranspiration in Jiang River in western Hubei during 1999—2016 based on BEPS-Terrainlab v2.0 model[J]. Journal of Central China Normal University (Natural Sciences Edition), 2020, 54(1): 140-148.] | |
[27] | Wu Z F, Zhang L H, Liu D D, et al. Simulation of evapotranspiration based on BEPS-TerrainLab V2.0 from 1990 to 2018 in the Dajiuhu Basin[J]. Chinese Geographical Science, 2020, 30(6): 1095-1110. |
[28] | Gretchen C D, Stephen Polasky, Joshua Goldstein, et al. Ecosystem services in decision making: Time to deliver[J]. Frontiers in Ecology and the Environment, 2009, 7(1): 21-28. |
[29] |
薛健, 李宗省, 冯起, 等. 1980—2017年祁连山水源涵养量时空变化特征[J]. 冰川冻土, 2022, 44(1): 1-13.
doi: 10.7522/j.issn.1000-0240.2022.0016 |
[Xue Jian, Li Zongxing, Feng Qi, et al. Spatiotemporal variation characteristics of water conservation amount in the Qilian Mountains from 1980 to 2017[J]. Journal of Glaciology and Geocryology, 2022, 44(1): 1-13.]
doi: 10.7522/j.issn.1000-0240.2022.0016 |
|
[30] | 王川. 基于生态系统服务供需匹配的兰州市生态安全格局构建[D]. 兰州: 西北师范大学, 2020. |
[Wang Chuan. Ecological security pattern construction of Lanzhou based on the supply and demand matching of ecosystem services[D]. Lanzhou: Northwest Normal University, 2020.] | |
[31] | 程业棋, 彭昊, 史雪晴. 关于《中华人民共和国黄河保护法(草案)》的探讨[J]. 水利学报, 2022, 53(9): 1064-1072. |
[Cheng Yeqi, Peng Hao, Shi Xueqing. Discussion on “The Yellow River Protection Law of the People’s Republic of China (Draft)”[J]. Journal of Hydraulic Engineering, 2022, 53(9): 1064-1072.] | |
[32] | Yang J, Huang X. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019[J]. Earth System Science Data, 2021, 13(8): 3907-3925. |
[33] | Peng S Z, Ding Y X, Liu W Z, et al. 1 km monthly temperature and precipitation dataset for China from 1901 to 2017[J]. Earth System Science Data, 2019, 11(4): 1931-1946. |
[34] | Yan F P, Wei S G, Zhang J, et al. Depth-to-bedrock map of China at a spatial resolution of 100 meters[J]. Scientific Data, 2020, 7(2): 1-13. |
[35] | 陈佳锐, 李佳洺, 马仁锋, 等. 青藏高原区域开发强度与生态安全的时空耦合演进[J]. 生态学报, 2023, 43(10): 4039-4053. |
[Chen Jiarui, Li Jiaming, Ma Renfeng, et al. Spatio-temporal coupling between regional development intensity and ecological security on the Qinghai-Tibet Plateau, China[J]. Acta Ecologica Sinica, 2023, 43(10): 4039-4053.] | |
[36] | Fischer G, Nachtergaele F, Prieler S, et al. Global agro-ecological zones assessment for agriculture[DB/OL]. IIASA, Laxenburg, Austria and FAO. [2023-10-23]. https://data.tpdc.ac.cn/zh-hans/data/611f7d50-b419-4d14-b4dd-4a944b141175. |
[37] | Fu B P. On the calculation of the evaporation from land surface[J]. Chinese Journal of Atmospheric Sciences, 1981, 5(1): 23-31. |
[38] | Zhang L, Hickel W K, Dawes W R, et al. A rational function approach for estimating mean annual evapotranspiration[J]. Water Resources Research, 2004, 40(2): 15-28. |
[39] |
杨洁, 谢保鹏, 张德罡. 基于InVEST模型的黄河流域产水量时空变化及其对降水和土地利用变化的响应[J]. 应用生态学报, 2020, 31(8): 2731-2739.
doi: 10.13287/j.1001-9332.202008.015 |
[Yang Jie, Xie Baopeng, Zhang Degang. Spatio-temporal variation of water yield and its response to precipitation and land use change in the Yellow River Basin based on InVEST model[J]. Chinese Journal of Applied Ecology, 2020, 31(8): 2731-2739.]
doi: 10.13287/j.1001-9332.202008.015 |
|
[40] | Zhang L, Dawes W R, Walker G R. Response of mean annual evapotranspiration to vegetation changes at catchment scale[J]. Water Resources Research, 2001, 37(3): 701-708. |
[41] | 张海铃, 叶长盛. 环鄱阳湖城市群生态保护重要性评价及其空间格局[J]. 水土保持通报, 2023, 43(1): 224-234. |
[Zhang Hailing, Ye Changsheng. Importance evaluation of ecological protection and spatial pattern of urban agglomeration around Poyang Lake[J]. Bulletin of Soil and Water Conservation, 2023, 43(1): 224-234.] | |
[42] | 贾雨凡, 王国庆. 基于InVEST模型的伊洛河流域水源涵养能力评估[J]. 水土保持学报, 2023, 37(3): 101-108. |
[Jia Yufan, Wang Guoqing. Assessment of water conservation capacity of Yiluo River Basin based on the InVEST model[J]. Bulletin of Soil and Water Conservation, 2023, 37(3): 101-108.] | |
[43] | 傅斌, 徐佩, 王玉宽, 等. 都江堰市水源涵养功能空间格局[J]. 生态学报, 2013, 33(3): 789-797. |
[Fu Bin, Xu Pei, Wang Yukuan, et al. Spatial pattern of water retetnion in Dujiangyan County[J]. Acta Ecologica Sinica, 2013, 33(3): 789-797.] | |
[44] | Cosby B J, Hornberger G M, Clapp R B, et al. A statistical exploration of the relationships of soil moisture characteristics to the physical properties of soils[J]. Water Resources Research, 1984, 20(6): 682-690. |
[1] | 超宝, 赵媛媛, 武海岩, 李媛, 苏宁. 2000—2020年蒙古高原生态系统服务及其对气候因子的响应[J]. 干旱区地理, 2024, 47(9): 1577-1586. |
[2] | 张晓东, 武丹, 王莹, 赵银鑫, 马瑜, 马玉学, 倪海玲. 耦合InVEST与Geodetector模型的银川市生境质量时空演变特征及影响因子研究[J]. 干旱区地理, 2024, 47(7): 1242-1251. |
[3] | 侯晋星, 潘换换, 杜自强, 武志涛, 张红. 山西黄河流域水生态系统服务时空分析[J]. 干旱区地理, 2024, 47(6): 1047-1060. |
[4] | 付玮, 夏文浩, 樊童生, 邹贞, 霍瑜. 塔里木河流域生态系统碳储量的情景预测分析[J]. 干旱区地理, 2024, 47(4): 634-647. |
[5] | 安文举, 鱼亦凡, 郝姗姗, 王英弟, 李小兵, 麦旭东. 基于土地利用变化的陕北多沙粗沙区生境质量演变及响应分析[J]. 干旱区地理, 2024, 47(3): 474-484. |
[6] | 陈繁繁, 白永平, 梁建设, 张春悦, 赵越, 龚享林. 兰州市蔬菜市场的空间分布特征及影响因素研究[J]. 干旱区地理, 2024, 47(2): 293-306. |
[7] | 郭燕, 张志斌, 陈龙, 马晓敏, 赵学伟. 居住自选择视角下城市建成环境对通勤模式选择的影响——以兰州市主城区为例[J]. 干旱区地理, 2024, 47(2): 307-318. |
[8] | 隋露, 闫志明, 李开放, 何佩恩, 马英杰, 张汝萃. 人类活动及气候变化影响下伊犁河谷生境质量预测研究[J]. 干旱区地理, 2024, 47(1): 104-116. |
[9] | 张文斌, 张志斌. 基于扩展生态位理论的居住空间分异研究——以兰州市为例[J]. 干旱区地理, 2023, 46(8): 1376-1386. |
[10] | 程静,王鹏,陈红翔,韩永贵. 渭河流域生境质量时空演变及其地形梯度效应与影响因素[J]. 干旱区地理, 2023, 46(3): 481-491. |
[11] | 马丽娜, 张飞云, 翟玉鑫, 滕伦, 康建国. 1980—2020年新疆土地利用变化下生态系统服务价值时空演变分析[J]. 干旱区地理, 2023, 46(2): 253-263. |
[12] | 包玉斌,黄涛,王耀宗,胡胜,吕林涛,唐谊娟,顾继升. 基于生态重要性与敏感性的六盘山区生态保护修复分区[J]. 干旱区地理, 2023, 46(11): 1778-1791. |
[13] | 翟玉鑫, 张飞云, 马丽娜. 基于三生空间的博斯腾湖流域生境质量时空演变及预估[J]. 干旱区地理, 2023, 46(11): 1792-1802. |
[14] | 晁勐, 张俊, 刘翔. 兰州市主城区房价分异及驱动因素研究[J]. 干旱区地理, 2022, 45(6): 2004-2012. |
[15] | 赵学伟,张志斌,冯斌,公维民,马晓敏,郭燕. 西北内陆中心城市物流企业空间分异及区位选择——以兰州市为例[J]. 干旱区地理, 2022, 45(5): 1671-1683. |
|