干旱区地理 ›› 2023, Vol. 46 ›› Issue (10): 1577-1590.doi: 10.12118/j.issn.1000-6060.2023.078
曹玉娟1,2(),司文洋1,2,杜自强1,2,梁寒雪1,2,雷添杰3,孙斌4,武志涛1,2()
收稿日期:
2023-02-23
修回日期:
2023-03-06
出版日期:
2023-10-25
发布日期:
2023-11-10
通讯作者:
武志涛(1985-),男,博士,教授,主要从事区域生态学、全球生态学、“3S”技术的应用等方面的研究. E-mail: 作者简介:
曹玉娟(1997-),女,硕士研究生,主要从事陆地生态系统与全球变化等方面的研究. E-mail: 基金资助:
CAO Yujuan1,2(),SI Wenyang1,2,DU Ziqiang1,2,LIANG Hanxue1,2,LEI Tianjie3,SUN Bin4,WU Zhitao1,2()
Received:
2023-02-23
Revised:
2023-03-06
Online:
2023-10-25
Published:
2023-11-10
摘要:
干旱导致的总初级生产力(GPP)的减少会对陆地碳汇产生重大影响。基于全国618个站点的月气象数据计算的标准降水蒸散指数(SPEI)和2套公开的GPP数据集(EC-LUE GPP和GLASS GPP),系统分析了中国1982—2017年典型干旱年的GPP在不同时间尺度下受不同程度干旱影响的变化。结果表明:(1) 基于SPEI的5个选取指标,选出1982—2017年典型干旱的年份为2001年和2011年。(2) 在年和季节尺度上,2001年的GPP受干旱影响严重区域主要在华北、东北和中东部地区的北部,2011年主要集中在西南地区的东南部和中东部地区。月尺度上,2001年5月的GPP受干旱影响最严重,主要集中在华北和东北的大部分区域。2011年1月GPP受干旱影响最为严重,主要集中在中东部地区的大部分区域。(3) 无论是年、季节还是月尺度,随着干旱程度的加重,导致GPP的下降率越大,极端干旱的影响最大。从季节尺度看,2001年夏季极端干旱造成GPP下降率分别为19.96%(EC-LUE GPP)和15.57%(GLASS GPP);2011年春季极端干旱造成GPP下降率分别为14.32%(EC-LUE GPP)和8.75%(GLASS GPP)。研究结果可进一步加深不同时间尺度下不同等级干旱对GPP影响的认识,对了解干旱条件下陆地与大气之间的碳交换具有重要意义。
曹玉娟, 司文洋, 杜自强, 梁寒雪, 雷添杰, 孙斌, 武志涛. 1982—2017年典型干旱年的中国GPP变化[J]. 干旱区地理, 2023, 46(10): 1577-1590.
CAO Yujuan, SI Wenyang, DU Ziqiang, LIANG Hanxue, LEI Tianjie, SUN Bin, WU Zhitao. Changes in GPP of China during the typical drought years from 1982 to 2017[J]. Arid Land Geography, 2023, 46(10): 1577-1590.
表4
典型干旱年不同等级干旱对季节GPP影响的比例"
季节 | GPP类型 | 2001年 | 2011年 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
轻度干旱 | 中度干旱 | 重度干旱 | 极端干旱 | 轻度干旱 | 中度干旱 | 重度干旱 | 极端干旱 | |||
春季 | EC-LUE GPP | -12.34 | -12.71 | -9.47 | -9.52 | -9.25 | -12.31 | -13.23 | -14.32 | |
GLASS GPP | -10.86 | -10.38 | -6.99 | -7.16 | -7.25 | -8.98 | -8.28 | -8.75 | ||
夏季 | EC-LUE GPP | -11.89 | -12.66 | -18.61 | -19.96 | -6.62 | -8.95 | -9.01 | -9.41 | |
GLASS GPP | -10.17 | -10.15 | -13.47 | -15.57 | -8.72 | -6.75 | -6.72 | -4.89 | ||
秋季 | EC-LUE GPP | -7.12 | -8.68 | -14.03 | -10.16 | -4.53 | -6.54 | -6.62 | -9.23 | |
GLASS GPP | -5.71 | -7.21 | -13.78 | -9.39 | -5.61 | -6.08 | -8.34 | 0.00 |
表5
2001年不同等级干旱对月GPP影响的比例"
月份 | GPP类型 | 轻度干旱 | 中度干旱 | 重度干旱 | 极端干旱 |
---|---|---|---|---|---|
5 | EC-LUE GPP | -18.80 | -22.54 | -22.74 | -22.91 |
GLASS GPP | -15.63 | -22.10 | -15.17 | -15.43 | |
6 | EC-LUE GPP | -10.66 | -18.59 | -20.17 | -15.48 |
GLASS GPP | -8.35 | -13.29 | -12.12 | -9.64 | |
7 | EC-LUE GPP | -13.48 | -13.91 | -15.88 | -19.42 |
GLASS GPP | -11.37 | -11.19 | -13.82 | -17.31 | |
8 | EC-LUE GPP | -11.38 | -12.50 | -18.61 | -18.62 |
GLASS GPP | -10.94 | -12.02 | -17.52 | -14.81 | |
9 | EC-LUE GPP | -9.23 | -11.43 | -18.13 | -17.64 |
GLASS GPP | -8.31 | -9.77 | -15.94 | -16.29 |
表6
2011年不同等级干旱对月GPP大小影响的比例"
月份 | GPP类型 | 轻度干旱 | 中度干旱 | 重度干旱 | 极端干旱 |
---|---|---|---|---|---|
1 | EC-LUE GPP | -48.46 | -86.29 | -91.99 | -97.91 |
GLASS GPP | -51.16 | -86.68 | -91.86 | -97.89 | |
4 | EC-LUE GPP | -10.35 | -15.32 | -16.75 | -17.36 |
GLASS GPP | -9.23 | -9.96 | -10.59 | -11.28 | |
5 | EC-LUE GPP | -9.61 | -12.88 | -13.17 | -14.80 |
GLASS GPP | -6.92 | -8.83 | -8.12 | -10.00 | |
6 | EC-LUE GPP | -11.10 | -10.62 | -12.90 | -18.31 |
GLASS GPP | -9.23 | -7.26 | -7.31 | -8.42 | |
7 | EC-LUE GPP | -8.31 | -8.80 | -9.20 | -5.46 |
GLASS GPP | -7.58 | -6.56 | -6.57 | -2.89 | |
8 | EC-LUE GPP | -10.97 | -12.28 | -15.78 | -12.14 |
GLASS GPP | -9.27 | -8.32 | -9.94 | -6.54 |
[1] | Du L T, Song N P, Liu K, et al. Comparison of two simulation methods of the temperature vegetation dryness index (TVDI) for drought monitoring in semi-arid regions of China[J]. Remote Sensing, 2017, 9(2): 177, doi: 10.3390/rs9020177. |
[2] | 姚玉璧, 张强, 李耀辉, 等. 干旱灾害风险评估技术及其科学问题与展望[J]. 资源科学, 2013, 35(9): 1884- 1897. |
[Yao Yubi, Zhang Qiang, Li Yaohui, et al. Drought risk assessment technological progresses and problems[J]. Resources Science, 2013, 35(9): 1884-1897. ] | |
[3] |
Dai A G. Increasing drought under global warming in observations and models[J]. Nature Climate Change, 2013, 3(2): 52-58.
doi: 10.1038/nclimate1633 |
[4] |
Leng G Y, Tang Q H, Rayburg S. Climate change impacts on meteorological, agricultural and hydrological droughts in China[J]. Global and Planetary Change, 2015, 126: 23-34.
doi: 10.1016/j.gloplacha.2015.01.003 |
[5] | 杨涛, 陆桂华, 李会会, 等. 气候变化下水文极端事件变化预测研究进展[J]. 水科学进展, 2011, 22(2): 279-286. |
[Yang Tao, Lu Guihua, Li Huihui, et al. Advances in the study of projection of climate change impacts on hydrological extremes[J]. Advances in Water Science, 2011, 22(2): 279-286. ] | |
[6] |
秦大河, 丁一汇, 王绍武, 等. 中国西部生态环境变化与对策建议[J]. 地球科学进展, 2002, 17(3): 314-319.
doi: 10.11867/j.issn.1001-8166.2002.03.0314 |
[Qin Dahe, Ding Yihui, Wang Shaowu, et al. Ecological environment change in west China and its response strategy[J]. Advances in Earth Science, 2002, 17(3): 314-319. ]
doi: 10.11867/j.issn.1001-8166.2002.03.0314 |
|
[7] | 刘洋洋, 章钊颖, 同琳静, 等. 中国草地净初级生产力时空格局及其影响因素[J]. 生态学杂志, 2020, 39(2): 349-363. |
[Liu Yangyang, Zhang Zhaoying, Tong Linjing, et al. Spatiotemporal dynamics of China’s grassland NPP and its driving factors[J]. Chinese Journal of Ecology, 2020, 39(2): 349-363. ] | |
[8] |
Sheffield J, Wood E F, Chaney N, et al. A drought monitoring and forecasting system for sub- Sahara African water resources and food security[J]. Bulletin of the American Meteorological Society, 2014, 95(6): 861-882.
doi: 10.1175/BAMS-D-12-00124.1 |
[9] |
Reichstein M, Bahn M, Ciais P, et al. Climate extremes and the carbon cycle[J]. Nature, 2013, 500(7462): 287-295.
doi: 10.1038/nature12350 |
[10] | Du L, Mikle N, Zou Z H, et al. Global patterns of extreme drought-induced loss in land primary production: Identifying ecological extremes from rain- use efficiency[J]. Science of the Total Environment, 2018, 628-629: 611-620. |
[11] |
Reyer C, Leuzinger S, Rammig A, et al. A plant’s perspective of extremes: Terrestrial plant responses to changing climatic variability[J]. Global Change Biology, 2013, 19(1): 75-89.
doi: 10.1111/gcb.2012.19.issue-1 |
[12] | 周国逸, 李琳, 吴安驰. 气候变暖下干旱对森林生态系统的影响[J]. 南京信息工程大学学报(自然科学版), 2020, 12(1): 81-88. |
[Zhou Guoyi, Li Lin, Wu Anchi. Effect of drought on forest ecosystem under warming climate[J]. Journal of Nanjing University of Information Science & Technology (Natural Science Edition), 2020, 12(1): 81-88. ] | |
[13] |
Corinne L Q, Michael R R, Josep G C, et al. Trends in the sources and sinks of carbon dioxide[J]. Nature Geoscience, 2009, 2(12): 831-836.
doi: 10.1038/ngeo689 |
[14] |
Orinne L Q, Robbie M A, Josep G C, et al. Global carbon budget 2016[J]. Earth System Science Data, 2016, 8(2): 605-649.
doi: 10.5194/essd-8-605-2016 |
[15] |
Yuan W P, Liu S, Zhou G S, et al. Deriving a light use efficiency model from eddy covariance flux data for predicting daily gross primary production across biomes[J]. Agricultural and Forest Meteorology, 2007, 143(3-4): 189-207.
doi: 10.1016/j.agrformet.2006.12.001 |
[16] |
Prentice I C, Heimann M, Sitch S. The carbon balance of the terrestrial biosphere: Ecosystem models and atmospheric observations[J]. Ecological Applications, 2000, 10(6): 1553-1573.
doi: 10.1890/1051-0761(2000)010[1553:TCBOTT]2.0.CO;2 |
[17] |
Rachel T P, Zhao M S, Wang H M, et al. Impact of satellite based PAR on estimates of terrestrial net primary productivity[J]. International Journal of Remote Sensing, 2010, 31(19): 5221-5237.
doi: 10.1080/01431161.2010.496474 |
[18] | Xiao J F, Frederic C, Cecile G, et al. Remote sensing of the terrestrial carbon cycle: A review of advances over 50 years[J]. Remote Sensing of Environment, 2019, 233: 111383, doi: 10.1016/j.rse. 2019.111383. |
[19] | 张雪琪, 夏倩倩, 陈亚宁, 等. 近20 a塔里木河生态输水对植被总初级生产力变化的影响[J]. 干旱区地理, 2021, 44(3): 718-728. |
[Zhang Xueqi, Xia Qianqian, Chen Yaning, et al. Effects of ecological water conveyance on gross primary productivity of vegetation in Tarim River in recent 20 years[J]. Arid Land Geography, 2021, 44(3): 718-728. ] | |
[20] | Du L T, Tian Q, Yu T, et al. A comprehensive drought monitoring method integrating MODIS and TRMM data[J]. International Journal of Applied Earth Observations and Geoinformation, 2012, 23: 245-253. |
[21] | He W, Ju W M, Jiang F, et al. Peak growing season patterns and climate extremes-driven responses of gross primary production estimated by satellite and process based models over North America[J]. Agricultural and Forest Meteorology, 2021, 298: 108292, doi:10.1016/j.agrformet.2020.108292. |
[22] | Vicca S, Balzarolo M, Filella I, et al. Remotely-sensed detection of effects of extreme droughts on gross primary production[J]. Scientific Reports, 2016, 6(1): 28269, doi: 10.1038/srep28269. |
[23] |
Chonggang X, Nate G M, Rosie A F, et al. Increasing impacts of extreme droughts on vegetation productivity under climate change[J]. Nature Climate Change, 2019, 9(12): 948-953.
doi: 10.1038/s41558-019-0630-6 |
[24] | Yu Z, Wang J X, Liu S, et al. Global gross primary productivity and water use efficiency changes under drought stress[J]. Environmental Research Letters, 2017, 12(1): 5258, doi: 10.1088/1748-9326/aa5258. |
[25] | Zhao M S, Steven W R. Response to comments on “drought-induced reduction in global terrestrial net primary production from 2000 through 2009”[J]. Science, 2011, 333(6046): 1039, doi:10.1126/science.1199169. |
[26] | Ciais P, Reichstein M, Viovy N, et al. Europe-wide reduction in primary productivity caused by the heat and drought in 2003[J]. Nature: International Weekly Journal of Science, 2005, 437(7058): 529-533. |
[27] | 杨洁, 王义民, 畅建霞, 等. PDSI与马尔科夫耦合的干旱预测[J]. 人民珠江, 2016, 37(8): 1-5. |
[Yang Jie, Wang Yimin, Chang Jianxia, et al. Drought prediction based on PDSI and Markov China Model[J]. Pearl River, 2016, 37(8): 1-5. ] | |
[28] | 黄生志, 黄强, 王义民, 等. 基于SPI的渭河流域干旱特征演变研究[J]. 自然灾害学报, 2015, 24(1): 15-22. |
[Huang Shengzhi, Huang Qiang, Wang Yimin, et al. Evolution of drought characteristics in the Weihe River Basin based on standardized precipitation index[J]. Journal of Natural Disasters, 2015, 24(1): 15-22. ] | |
[29] |
Vicente-Serrano S M, Beguería S, López-Moreno J I. A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index[J]. Journal of Climate, 2010, 23(7): 1696-1718.
doi: 10.1175/2009JCLI2909.1 |
[30] | Zhao H, Gao G, An W, et al. Timescale differences between SC-PDSI and SPEI for drought monitoring in China[J]. Physics and Chemistry of the Earth, 2015, 102: 48-58. |
[31] |
Alessandro A, Pierre F, Christian B, et al. Spatiotemporal patterns of terrestrial gross primary production: A review[J]. Reviews of Geophysics, 2015, 53(3): 785-818.
doi: 10.1002/rog.v53.3 |
[32] | 高振翔, 叶剑, 丁仁惠, 等. 中国植被总初级生产力对气候变化的响应[J]. 水土保持研究, 2022, 29(4): 394-399. |
[Gao Zhenxiang, Ye Jian, Ding Renhui, et al. Response of vegetation gross primary productivity to climate change in China[J]. Research of Soil and Water Conservation, 2022, 29(4): 394-399. ] | |
[33] |
Yuan W P, Liu S G, Yu G R, et al. Global estimates of evapotranspiration and gross primary production based on MODIS and global meteorology data[J]. Remote Sensing of Environment, 2010, 114(7): 1416-1431.
doi: 10.1016/j.rse.2010.01.022 |
[34] |
Martin J, Sujan K, Ulrich W, et al. The FLUXCOM ensemble of global land-atmosphere energy fluxes[J]. Scientific Data, 2019, 6(1): 74, doi: 10.1038/s41597-019-0076-8.
pmid: 31133670 |
[35] |
Chongya J, Youngryel R. Multi-scale evaluation of global gross primary productivity and evapotranspiration products derived from Breathing Earth System Simulator (BESS)[J]. Remote Sensing of Environment, 2016, 186: 528-547.
doi: 10.1016/j.rse.2016.08.030 |
[36] |
Piao S L, Sitch S, Ciais P, et al. Evaluation of terrestrial carbon cycle models for their response to climate variability and to CO2 trends[J]. Global Change Biology, 2013, 19(7): 2117-2132.
doi: 10.1111/gcb.2013.19.issue-7 |
[37] |
Wang W L, Dungan J, Hashimoto H, et al. Diagnosing and assessing uncertainties of terrestrial ecosystem models in a multimodel ensemble experiment: 1. Primary production[J]. Global Change Biology, 2011, 17(3): 1350-1366.
doi: 10.1111/gcb.2011.17.issue-3 |
[38] | 侯吉宇, 周艳莲, 刘洋. 不同叶面积指数遥感数据模拟中国总初级生产力的时空差异[J]. 遥感技术与应用, 2020, 35(5): 1015-1027. |
[Hou Jiyu, Zhou Yanlian, Liu Yang. Spatial and temporal differences of GPP simulated by different satellite-derived LAI in China[J]. Remote Sensing Technology and Application, 2020, 35(5): 1015-1027. ] | |
[39] | 张心竹, 王鹤松, 延昊, 等. 2001—2018年中国总初级生产力时空变化的遥感研究[J]. 生态学报, 2021, 41(16): 6351-6362. |
[Zhang Xinzhu, Wang Hesong, Yan Hao, et al. Analysis of spatio-temporal changes of gross primary productivity in China from 2001 to 2018 based on remote sensing[J]. Acta Ecologica Sinica, 2021, 41(16): 6351-6362. ] | |
[40] | Running S W, Thornton P E, Nemani R, et al. Global terrestrial gross and net primary productivity from the earth observing system[C]// Sala O E, Jackson R B, Mooney H A, et al. Methods in Ecosystem Science. New York: Springer, 2000. |
[41] | 杜文丽, 孙少波, 吴云涛, 等. 1980—2013年中国陆地生态系统总初级生产力对干旱的响应特征[J]. 生态学杂志, 2020, 39(1): 23-35. |
[Du Wenli, Sun Shaobo, Wu Yuntao, et al. The response of gross primary production to drought in terrestrial ecosystems of China during 1980—2013[J]. Chinese Journal of Ecology, 2020, 39(1): 23-35. ] | |
[42] | 童志辉, 熊助国, 孙睿, 等. 利用多源数据估算黑河流域总初级生产力[J]. 干旱区地理, 2020, 43(2): 440-448. |
[Tong Zhihui, Xiong Zhuguo, Sun Rui, et al. Estimating gross primary production in the Heihe River Basin from multiple data sources[J]. Arid Land Geography, 2020, 43(2): 440-448. ] | |
[43] |
Zheng Y, Shen R Q, Wang Y W, et al. Improved estimate of global gross primary production for reproducing its long-term variation, 1982—2017[J]. Earth System Science Data, 2020, 12(4): 2725-2746.
doi: 10.5194/essd-12-2725-2020 |
[44] |
梁顺林, 程洁, 贾坤, 等. 陆表定量遥感反演方法的发展新动态[J]. 遥感学报, 2016, 20(5): 875-898.
doi: 10.11834/jrs.20166258 |
[Liang Shunlin, Cheng Jie, Jia Kun, et al. Recent progress in land surface quantitative remote sensing[J]. National Remote Sensing Bulletin, 2016, 20(5): 875-898. ]
doi: 10.11834/jrs.20166258 |
|
[45] | 薛华柱, 李阳阳, 董国涛. 基于SPEI指数分析河西走廊气象干旱时空变化特征[J]. 中国农业气象, 2022, 43(11): 923-934. |
[Xue Huazhu, Li Yangyang, Dong Guotao. Analysis of spatial-temporal variation characteristics of meteorological drought in the Hexi Corridor based on SPEI index[J]. Chinese Journal of Agrmeteorology, 2022, 43(11): 923-934. ] | |
[46] | 王佳瑞, 孙从建, 郑振婧, 等. 近57年来黄土高原干旱特征及其与大气环流的关系[J]. 生态学报, 2021, 41(13): 5340-5351. |
[Wang Jiarui, Sun Congjian, Zheng Zhenjing, et al. Drought characteristics of the Loess Plateau in the past 60 years and its relationship with changes in atmospheric circulation[J]. Acta Ecologica Sinica, 2021, 41(13): 5340-5351. ] | |
[47] |
Wu Z T, Yu L, Du Z Q, et al. Recent changes in the drought of China from 1960 to 2014[J]. International Journal of Climatology, 2020, 40(7): 3281-3296.
doi: 10.1002/joc.v40.7 |
[48] | 路金强, 甘容, 杨峰, 等. 基于SPEI指数的河南省干旱特征及与环流指数的相关性分析[J]. 中国农村水利水电, 2022, 474(4): 17-24. |
[Lu Jinqiang, Gan Rong, Yang Feng, et al. Drought characteristics and its correlation with circulation index Henan Province based on SPEI index[J]. China Rural Water and Hydropower, 2022, 474(4): 17-24. ] | |
[49] |
Lei T J, Wu J J, Li X H, et al. A new framework for evaluating the impacts of drought on net primary productivity of grassland[J]. Science of the Total Environment, 2015, 536: 161-172.
doi: 10.1016/j.scitotenv.2015.06.138 |
[50] | 卫洁. 基于遥感的黄淮海冬小麦区干旱指数适应性研究[D]. 太原: 山西大学, 2019. |
[Wei Jie. Suitability of drought index in winter wheat area of Huang-Huai-Hai Plain based on remote sensing[D]. Taiyuan: Shanxi University, 2019. ] | |
[51] | Yu T, Sun R, Xiao Z Q, et al. Estimation of global vegetation productivity from global land surface satellite data[J]. Remote Sensing, 2018, 10(2): 327, doi: 10.3390/rs10020327. |
[52] |
王小红, 刘宪锋, 孙高鹏, 等. 2001—2020年秦巴山区植被生产力对干旱的响应[J]. 应用生态学报, 2022, 33(8): 2105-2112.
doi: 10.13287/j.1001-9332.202208.021 |
[Wang Xiaohong, Liu Xianfeng, Sun Gaopeng, et al. Response of vegetation productivity to drought in the Qinling-Daba Mountains, China from 2001 to 2020[J]. Chinese Journal of Applied Ecology, 2022, 33(8): 2105-2112. ]
doi: 10.13287/j.1001-9332.202208.021 |
|
[53] | 马志婷. 1960—2014年中国干旱时空变化及其对植被的影响[D]. 太原: 山西大学, 2018. |
[Ma Zhiting. Spatial and temporal variation of drought and its impact on vegetation in China during 1960—2014[D]. Taiyuan: Shanxi University, 2018. ] | |
[54] | 包春兰, 陈华根. 东北平原植被对气候变化的滞后响应研究[J]. 测绘标准化, 2020, 36(3): 14-20. |
[Bao Chunlan, Chen Huagen. On time-lag response of vegetation cover to climate change in Northeast Plain[J]. Standardization of Surveying and Mapping, 2020, 36(3): 14-20. ] | |
[55] | 李小燕, 任志远, 张翀, 等. 中国植被覆盖气候限制性分区及时空变化[J]. 陕西师范大学学报(自然科学版), 2013, 41(3): 76-81. |
[Li Xiaoyan, Ren Zhiyuan, Zhang Chong, et al. Vegetation cover restrictive zoning and temporal and spatial change of China[J]. Journal of Shaanxi Normal University (Natural Science Edition), 2013, 41(3): 76-81. ] | |
[56] | 左冰洁, 孙玉军. 福建省几种气象干旱指数的对比分析[J]. 气象, 2019, 45(5): 685-694. |
[Zuo Bingjie, Sun Yujun. Comparative analysis of several drought indices to use in Fujian Province[J]. Meteorological Monthly, 2019, 45(5): 685-694. ] | |
[57] | 张世喆, 朱秀芳, 刘婷婷, 等. 气候变化下中国不同植被区总初级生产力对干旱的响应[J]. 生态学报, 2022, 42(8): 3429-3440. |
[Zhang Shizhe, Zhu Xiufang, Liu Tingting, et al. Response of gross primary production to drought under climate change in different vegetation regions of China[J]. Acta Ecologica Sinica, 2022, 42(8): 3429-3440. ] | |
[58] |
Wang H Y, He B, Zhang Y F, et al. Response of ecosystem productivity to dry/wet conditions indicated by different drought indices[J]. Science of the Total Environment, 2018, 612: 347-357.
doi: 10.1016/j.scitotenv.2017.08.212 |
[59] |
田汉勤, 徐小锋, 宋霞. 干旱对陆地生态系统生产力的影响[J]. 植物生态学报, 2007, 31(2): 231-241.
doi: 10.17521/cjpe.2007.0027 |
[Tian Hanqin, Xu Xiaofeng Song Xia. Drought impacts on terrestrial ecosystem productivity[J]. Chinese Journal of Plant Ecology, 2007, 31(2): 231-241. ]
doi: 10.17521/cjpe.2007.0027 |
|
[60] |
Chen G S, Tian H Q, Zhang C, et al. Drought in the southern United States over the 20th century: Variability and its impacts on terrestrial ecosystem productivity and carbon storage[J]. Climatic Change, 2012, 114(2): 379-397.
doi: 10.1007/s10584-012-0410-z |
[61] |
Priante N, Vourlitis G L, Hayashi M, et al. Comparison of the mass and energy exchange of a pasture and a mature transitional tropical forest of the southern Amazon Basin during a seasonal transition[J]. Global Change Biology, 2004, 10(5): 863-876.
doi: 10.1111/gcb.2004.10.issue-5 |
[1] | 卢冬燕, 朱秀芳, 刘婷婷, 张世喆. 2 ℃温升情景下中国气象干旱特征变化[J]. 干旱区地理, 2023, 46(8): 1227-1237. |
[2] | 陈潘愉, 童陆亿. 中国主要城市居民住房支付能力演化特征研究[J]. 干旱区地理, 2023, 46(8): 1324-1332. |
[3] | 魏涛, 王云权. 基于PML-V2数据集的中国蒸散发时空动态特征分析[J]. 干旱区地理, 2023, 46(6): 857-867. |
[4] | 孔德明, 郝丽莎, 夏四友, 李红波. 粮食单产视角下中国北方农牧交错带粮食安全研究[J]. 干旱区地理, 2023, 46(5): 782-792. |
[5] | 朱磊, 李燕楠, 胡静, 田小波, 徐佳慧, 卿琪. 中国研学实践基地空间格局的多尺度特征及影响机理研究[J]. 干旱区地理, 2023, 46(4): 625-635. |
[6] | 邹亚锋, 张倩, 饶钰飞, 邓敏, 王淇. 中国西部省会城市新型城镇化发展水平演化研究[J]. 干旱区地理, 2023, 46(4): 636-648. |
[7] | 梁常安, 杜国明, 郝均. 中国农业技术创新的时空格局及其诱致性[J]. 干旱区地理, 2023, 46(4): 667-677. |
[8] | 肖东升,王宁,刘志成. 干旱地区“代表性人口格网数据集”精度研究——以甘宁青地区为例[J]. 干旱区地理, 2023, 46(3): 505-514. |
[9] | 徐晓亮, 黄丹, 刘旭义, 关靖云. 中国省域旅游效率时空演变特征及影响因素研究[J]. 干旱区地理, 2023, 46(12): 2052-2060. |
[10] | 杨涛, 杨莲梅, 李建刚, 仝泽鹏. 中国天山西部区域云降水物理野外观测科学试验研究若干进展[J]. 干旱区地理, 2023, 46(10): 1602-1611. |
[11] | 杨丽,付玉慧,王姣姣. “一带一路”沿线中国省份旅游信息流时空分布格局及驱动因素分析[J]. 干旱区地理, 2023, 46(10): 1714-1722. |
[12] | 肖懿晨, 文军, 李玲玉, 冯庆旺. 中国与“一带一路”沿线国家空间联通水平差异与成因分析[J]. 干旱区地理, 2023, 46(10): 1723-1731. |
[13] | 韩孺村,张莹,李占玲. 两种不确定性来源对干旱指数SPEI及干旱评估的影响[J]. 干旱区地理, 2022, 45(5): 1392-1401. |
[14] | 姚旭阳,张明军,张宇,王家鑫,肖涵余. 中国西北地区气候转型的新认识[J]. 干旱区地理, 2022, 45(3): 671-683. |
[15] | 金令,王永芳,郭恩亮,刘桂香,包玉龙. 基于SPEIbase v.2.6数据集的内蒙古旱灾危险性评价[J]. 干旱区地理, 2022, 45(3): 695-705. |
|