[1] |
左大幸, 臧传富, 汪丽娜. 1980-2019年珠江流域潜在蒸发量时空变化及其影响因素分析[J]. 人民珠江, 2022, 43(10): 41-49.
|
|
[Zuo Daxing, Zang Chuanfu, Wang Li'na. Temporal and spatial variation of potential evaporation and its influencing factors in Pearl River Basin from 1980 to 2019[J]. Pearl River, 2022, 43(10): 41-49.]
|
[2] |
张琨. 遥感蒸散发模型参数敏感性分析与优化方法研究[D]. 兰州: 兰州大学, 2018.
|
|
[Zhang Kun. Parameter sensitivity analysis and optimization for remote sensing based evapotranspiration model[D]. Lanzhou: Lanzhou University, 2018.]
|
[3] |
Mu Q Z, Zhao M S, Running S W. Improvements to a MODIS global terrestrial evapotranspiration algorithm[J]. Remote Sensing of Environment, 2011, 115(8): 1781-1800.
doi: 10.1016/j.rse.2011.02.019
|
[4] |
Zhang Y Q, Kong D D, Gan R, et al. Coupled estimation of 500 m and 8-day resolution global evapotranspiration and gross primary production in 2002-2017[J]. Remote Sensing of Environment, 2019, 222: 165-182.
doi: 10.1016/j.rse.2018.12.031
|
[5] |
Martens B, Miralles D G, Lievens H, et al. GLEAM v3: Satellite-based land evaporation and root-zone soil moisture[J]. Geoscientific Model Development, 2017, 10(5): 1903-1925.
doi: 10.5194/gmd-10-1903-2017
|
[6] |
刘昌明, 张丹. 中国地表潜在蒸散发敏感性的时空变化特征分析[J]. 地理学报, 2011, 66(5): 579-588.
doi: 10.11821/xb201105001
|
|
[Liu Changming, Zhang Dan. Temporal and spatial change analysis of the sensitivity of potential evapotranspiration to meteorological influencing factors in China[J]. Acta Geographica Sinica, 2011, 66(5): 579-588.]
doi: 10.11821/xb201105001
|
[7] |
张巧凤, 刘桂香, 于红博, 等. 基于MOD16A2的锡林郭勒草原近14年的蒸散发时空动态[J]. 草地学报, 2016, 24(2): 286-293.
doi: 10.11733/j.issn.1007-0435.2016.02.007
|
|
[Zhang Qiaofeng, Liu Guixiang, Yu Hongbo, et al. Temporal and spatial dynamic of ET based on MOD16A2 in recent fourteen years in Xilingol Steppe[J]. Acta Agrestia Sinica, 2016, 24(2): 286-293.]
doi: 10.11733/j.issn.1007-0435.2016.02.007
|
[8] |
邓兴耀, 刘洋, 刘志辉, 等. 中国西北干旱区蒸散发时空动态特征[J]. 生态学报, 2017, 37(9): 2994-3008.
|
|
[Deng Xingyao, Liu Yang, Liu Zhihui, et al. Temporal-spatial dynamic change characteristics of evapotranspiration in arid region of northwest China[J]. Acta Ecologica Sinica, 2017, 37(9): 2994-3008.]
|
[9] |
郑德凤, 詹诗瑶, 曹永强. 河北省潜在蒸散量与水分盈亏量时空动态特征分析[J]. 人民珠江, 2022, 43(3): 54-65.
|
|
[Zheng Defeng, Zhan Shiyao, Cao Yongqiang. Analysis of spatiotemporal dynamic characteristics on potential evapotranspiration and water budget in Hebei Province[J]. Pearl River, 2022, 43(3): 54-65.]
|
[10] |
Pastorello G, Trotta C, Canfora E, et al. The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data[J]. Scientific Data, 2020, 7(1): 1-27.
doi: 10.1038/s41597-019-0340-y
|
[11] |
朱炳海. 中国气候[M]. 北京: 科学出版社, 1962: 147-150.
|
|
[Zhu Binghai. Climate of China[M]. Beijing: Science Press, 1962: 147-150.]
|
[12] |
Miralles D G, Holmes T R H, De Jeu R A M, et al. Global land-surface evaporation estimated from satellite-based observations[J]. Hydrology and Earth System Sciences, 2011, 15(2): 453-469.
doi: 10.5194/hess-15-453-2011
|
[13] |
Miralles D G, Van Den Berg M J, Gash J H, et al. El Niño-La Niña cycle and recent trends in continental evaporation[J]. Nature Climate Change, 2014, 4(2): 122-126.
doi: 10.1038/nclimate2068
|
[14] |
Running S W, Mu Q Z, Zhao M S, et al. MODIS global terrestrial evapotranspiration (ET) product (MOD16A2/A3 and year-end gap-filled MOD16A2GF/A3GF) NASA Earth Observing System MODIS Land Algorithm (for collection 6)[M]. Washington, DC, USA: National Aeronautics and Space Administration, 2019: 1-37.
|
[15] |
Farr T G, Rosen P A, Caro E, et al. The shuttle radar topography mission[J]. Reviews of Geophysics, 2007, 45(2): RG2004, doi: 10.1029/2005RG000183.
doi: 10.1029/2005RG000183
|
[16] |
陈龙. 基于不同遥感数据估算全球陆地初级生产力与蒸散发的对比研究[D]. 北京: 中国矿业大学, 2017.
|
|
[Chen Long. Comparison of estimated global gross primary productivity and evapotranspiration based on different remote sensing data[D]. Beijing: China University of Mining and Technology, 2017.]
|
[17] |
谢旭红, 武磊, 魏健美, 等. 三种蒸散发产品在西北内陆河上游山区的适用性比较[J]. 兰州大学学报(自然科学版), 2021, 57(4): 437-446.
|
|
[Xie Xuhong, Wu Lei, Wei Jianmei, et al. Applicability assessment of AET products in the alpine regions of northwestern China[J]. Journal of Lanzhou University (Natural Sciences Edition), 2021, 57(4): 437-446.]
|
[18] |
汪士为. 近20年内蒙古干旱时空动态及其对气候、蒸散发变化的响应[J]. 水土保持研究, 2022, 29(4): 231-239.
|
|
[Wang Shiwei. Spatial and temporal dynamics of drought in Inner Mongolia in recent 20 years and its response to seasonal climate and evapotranspiration[J]. Research of Soil and Water Conservation, 2022, 29(4): 231-239.]
|
[19] |
张鹏, 张圣微, 徐冉, 等. 基于遥感的科尔沁沙地蒸散发时空动态[J]. 水土保持研究, 2021, 28(3): 399-405, 414-415.
|
|
[Zhang Peng, Zhang Shengwei, Xu Ran, et al. Spatiotemporal dynamics of evapotranspiration in Horqin Sandy Land based on remote sensing[J]. Research of Soil and Water Conservation, 2021, 28(3): 399-405, 414-415.]
|
[20] |
张翔, 朱晓昱, 沈贝贝, 等. 呼伦贝尔植被蒸散发时空变化研究[J]. 中国农业资源与区划, 2020, 41(4): 308-316.
|
|
[Zhang Xiang, Zhu Xiaoyu, Shen Beibei, et al. Analysis of temporal and spatial variation of vegetation evapotranspiration in Hulun Buir[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2020, 41(4): 308-316.]
|
[21] |
Milich L, Weiss E. GAC NDVI interannual coefficient of variation (CoV) images: Ground truth sampling of the Sahel along north-south transects[J]. International Journal of Remote Sensing, 2000, 21(2): 235-260.
doi: 10.1080/014311600210812
|
[22] |
张钊, 陈宝瑞, 辛晓平. 1960-2015年呼伦贝尔草原气温和降水格局变化特征[J]. 中国农业资源与区划, 2018, 39(12): 121-128.
|
|
[Zhang Zhao, Chen Baorui, Xin Xiaoping. Variations of temperature and precipitation pattern in Hulunber grassland from 1960 to 2015[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2018, 39(12): 121-128.]
|
[23] |
谷佳贺, 薛华柱, 董国涛, 等. 黄河流域NDVI/土地利用对蒸散发时空变化的影响[J]. 干旱区地理, 2021, 44(1): 158-167.
|
|
[Gu Jiahe, Xue Huazhu, Dong Guotao, et al. Effects of NDVI/land-use on spatiotemporal changes of evapotranspiration in the Yellow River Basin[J]. Arid Land Geography, 2021, 44(1): 158-167.]
|
[24] |
Fensholt R, Langanke T, Rasmussen K, et al. Greenness in semi-arid areas across the globe 1981-2007: An earth observing satellite based analysis of trends and drivers[J]. Remote Sensing of Environment, 2012, 121: 144-158.
doi: 10.1016/j.rse.2012.01.017
|
[25] |
Jiapaer G, Liang S L, Yi Q X, et al. Vegetation dynamics and responses to recent climate change in Xinjiang using leaf area index as an indicator[J]. Ecological Indicators, 2015, 58: 64-76.
doi: 10.1016/j.ecolind.2015.05.036
|
[26] |
Zhang H F, Shu Y T, Yang O. Estimation of Hurst parameter by variance-time plots[C]// 1997 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing, PACRIM. 10 Years Networking the Pacific Rim, 1987-1997. Canada: IEEE, 1997, 2: 883-886.
|
[27] |
陈耀亮. 干旱区内陆河流域土地利用/土地覆被变化及其对蒸散发的影响[D]. 杭州: 浙江大学, 2018.
|
|
[Chen Yaoliang. Land-use and land-cover change and its impacts on evapotranspiration in inland river basin of arid region[D]. Hangzhou: Zhejiang University, 2018.]
|
[28] |
詹明月. 基于模式数据的中国植被绿化对陆地蒸散发影响研究[D]. 南京: 南京信息工程大学, 2022.
|
|
[Zhan Mingyue. Effects of vegetation greening on land evapotranspiration in China based on model data[D]. Nanjing: Nanjing University of Information Science & Technology, 2022.]
|
[29] |
杨晓慧, 于凤存. 巢湖芦苇湿地蒸散发量及其影响因素分析[J]. 治淮, 2022(4): 21-23.
|
|
[Yang Xiaohui, Yu Fengcun. Analysis of evapotranspiration and its influencing factors in reed wetland of Chaohu Lake[J]. Harnessing the Huaihe River, 2022(4): 21-23.]
|