干旱区地理 ›› 2023, Vol. 46 ›› Issue (6): 857-867.doi: 10.12118/j.issn.1000-6060.2022.476 cstr: 32274.14.ALG2022476
收稿日期:
2022-09-22
修回日期:
2022-10-02
出版日期:
2023-06-25
发布日期:
2023-07-24
作者简介:
魏涛(1993-),男,硕士研究生,主要从事陆-气水分交换研究. E-mail: 基金资助:
Received:
2022-09-22
Revised:
2022-10-02
Published:
2023-06-25
Online:
2023-07-24
摘要:
陆地蒸散发是陆-气水热交换的重要过程,是全球水分运移及能量转换中重要的一环。识别蒸散发的时空动态特征对研究区域水循环和能量转换具有重要意义。此次研究利用9个通量站观测数据,对比分析了3种全球蒸散发产品(GLEAM、MOD16以及PML-V2)在中国区域的适用性。在此基础上,选取在中国区域适宜性最佳的地表蒸散发产品数据,对2003—2020年中国地表蒸散发时空动态特征进行了分析。结果表明:(1) PML-V2蒸散发产品在中国区域的适用性最佳。(2) 在时间上,中国蒸散发在研究时间段呈增长趋势;空间上,研究时间段由西北到东南总体呈增加趋势。(3) 基于Hurst指数分析的未来中国蒸散发变化状况,预期将与过去表现相反趋势,即过去总体呈增长趋势,未来蒸散发会下降。此次研究通过对中国地表蒸散发时空动态特征进行分析,以期为区域水资源利用及优化配置提供参考借鉴。
魏涛, 王云权. 基于PML-V2数据集的中国蒸散发时空动态特征分析[J]. 干旱区地理, 2023, 46(6): 857-867.
WEI Tao, WANG Yunquan. Temporal and spatial dynamic analysis of terrestrial evapotranspiration in China based on PML-V2 product[J]. Arid Land Geography, 2023, 46(6): 857-867.
表1
通量站点基本信息"
站点ID | 站点名 | 经度/(°) | 纬度/(°) | 土地覆盖类型 | 年份 |
---|---|---|---|---|---|
CN-Cha | 长白山 | 128.0958 | 42.4025 | 混生林 | 2003—2005 |
CN-Cng | 长岭 | 123.5092 | 44.5934 | 草地 | 2007—2010 |
CN-Dan | 当雄 | 91.0664 | 30.4978 | 草地 | 2004—2005 |
CN-Din | 鼎湖山 | 112.5361 | 23.1733 | 常绿阔叶林 | 2003—2005 |
CN-Du2 | 多伦草地 | 116.2836 | 42.0467 | 草地 | 2006—2008 |
CN-Du3 | 多伦退化草甸 | 116.2809 | 42.0551 | 草地 | 2009—2010 |
CN-Ha2 | 海北灌丛 | 101.3269 | 37.6086 | 湿地 | 2003—2005 |
CN-HaM | 西藏海北高山站 | 101.1800 | 37.3700 | 草地 | 2002—2004 |
CN-Qia | 千烟洲 | 115.0581 | 26.7414 | 常绿针叶林 | 2003—2005 |
表2
分析方法"
方法 | 作用 |
---|---|
变异系数法 | 统计变量各组数据的变异程度,统计分析蒸散发在时间序列上的稳定性,变异系数的大小反应了像元各年份数据间的离散程度。 |
Theil-Sen Median趋势分析 | 稳健的非参数统计趋势计算方法,趋势值(β)大于0时,表示正增长趋势,小于0则表示下降趋势。 |
Mann-Kendall检验 | 非参数的时间序列趋势性检验方法。在给定显著性水平下,当M-K检验值(Z)的绝对值小于临界值时,即接受原假设,趋势不显著;当Z的绝对值大于临界值时,则拒绝原假设,趋势显著。 |
赫斯特指数 | 用来衡量时间序列是否有长期记忆的一个指标,赫斯特指数(H)位于0和1之间,当H为0.5时,序列是随机的,即没有自相关性;当H大于0.5时,序列有很强的正相关性,未来趋势与过去趋势一致;当H小于0.5时,序列有很强的负相关性,未来趋势与过去趋势相反。 |
表 3
2003—2020年中国蒸散发统计分析"
分区 | 面积/104 km2 | 最小值/mm·a-1 | 最大值/mm·a-1 | 均值/mm·a-1 | 标准差/mm·a-1 | 变异系数 |
---|---|---|---|---|---|---|
北温带区(I) | 18.73 | 38.02 | 716.72 | 107.47 | 24.50 | 0.23 |
中温带区(II) | 303.49 | 0.20 | 2205.41 | 180.85 | 108.76 | 0.60 |
南温带区(III) | 162.77 | 0.10 | 2466.08 | 259.15 | 215.44 | 0.83 |
北亚热带区(IV) | 56.76 | 0.20 | 2283.38 | 537.27 | 232.99 | 0.43 |
中亚热带区(V) | 120.64 | 0.20 | 2462.84 | 522.95 | 147.82 | 0.28 |
南亚热带区(VI) | 38.23 | 0.10 | 3422.79 | 719.66 | 179.79 | 0.25 |
北热带区(VII) | 7.60 | 0.20 | 3434.04 | 858.29 | 203.59 | 0.24 |
中热带区(VIII) | 0.91 | 1.01 | 3382.74 | 990.66 | 256.40 | 0.26 |
高原气候区(H) | 251.41 | 0.10 | 2288.14 | 278.22 | 207.24 | 0.74 |
表4
2003—2020年中国蒸散发时序变异系数统计分析"
分区 | 面积/104 km2 | 最小值 | 最大值 | 均值 | 标准差 |
---|---|---|---|---|---|
北温带区(I) | 18.73 | 0.09 | 1.28 | 0.37 | 0.16 |
中温带区(II) | 303.49 | 0.03 | 4.24 | 0.35 | 0.15 |
南温带区(III) | 162.77 | 0.03 | 4.24 | 0.38 | 0.35 |
北亚热带区(IV) | 56.76 | 0.00 | 4.24 | 0.13 | 0.06 |
中亚热带区(V) | 120.64 | 0.00 | 4.24 | 0.16 | 0.08 |
南亚热带区(VI) | 38.23 | 0.00 | 4.24 | 0.13 | 0.11 |
北热带区(VII) | 7.60 | 0.03 | 4.24 | 0.11 | 0.07 |
中热带区(VIII) | 0.91 | 0.03 | 4.24 | 0.09 | 0.21 |
高原气候区(H) | 251.41 | 0.03 | 4.24 | 0.34 | 0.22 |
表5
拟合回归系数"
分区 | 面积/104 km2 | B0 | B1 |
---|---|---|---|
北温带区(I) | 18.73 | -5517.40 | 2.80 |
中温带区(II) | 303.49 | 161.74 | 0.01 |
南温带区(III) | 162.77 | 1645.51 | -0.69 |
北亚热带区(IV) | 56.76 | -4028.99 | 2.27 |
中亚热带区(V) | 120.64 | -3788.96 | 2.14 |
南亚热带区(VI) | 38.23 | 464.99 | 0.13 |
北热带区(VII) | 7.60 | 310.23 | 0.27 |
中热带区(VIII) | 0.91 | -699.10 | 0.84 |
高原气候区(H) | 251.14 | -268.73 | 0.27 |
全区 | 961.63 | -1302.30 | 0.89 |
表6
中国不同分区T-S分析系数和M-K分析Z值统计"
分区 | T-S分析系数 | M-K分析Z值 | 双边检验可信度/% |
---|---|---|---|
北温带区(I) | 0.0055 | 1.54 | 87.64 |
中温带区(II) | -0.0007 | -0.03 | 2.40 |
南温带区(III) | -0.0020 | -0.40 | 31.82 |
北亚热带区(IV) | 0.0048 | 0.51 | 39.00 |
中亚热带区(V) | 0.0054 | 0.52 | 39.70 |
南亚热带区(VI) | -0.0001 | -0.02 | 1.60 |
北热带区(VII) | 0.0003 | 0.01 | 0.80 |
中热带区(VIII) | 0.0015 | 0.11 | 8.76 |
高原气候区(H) | 0.0003 | -0.02 | 1.60 |
[1] | 左大幸, 臧传富, 汪丽娜. 1980-2019年珠江流域潜在蒸发量时空变化及其影响因素分析[J]. 人民珠江, 2022, 43(10): 41-49. |
[Zuo Daxing, Zang Chuanfu, Wang Li'na. Temporal and spatial variation of potential evaporation and its influencing factors in Pearl River Basin from 1980 to 2019[J]. Pearl River, 2022, 43(10): 41-49.] | |
[2] | 张琨. 遥感蒸散发模型参数敏感性分析与优化方法研究[D]. 兰州: 兰州大学, 2018. |
[Zhang Kun. Parameter sensitivity analysis and optimization for remote sensing based evapotranspiration model[D]. Lanzhou: Lanzhou University, 2018.] | |
[3] |
Mu Q Z, Zhao M S, Running S W. Improvements to a MODIS global terrestrial evapotranspiration algorithm[J]. Remote Sensing of Environment, 2011, 115(8): 1781-1800.
doi: 10.1016/j.rse.2011.02.019 |
[4] |
Zhang Y Q, Kong D D, Gan R, et al. Coupled estimation of 500 m and 8-day resolution global evapotranspiration and gross primary production in 2002-2017[J]. Remote Sensing of Environment, 2019, 222: 165-182.
doi: 10.1016/j.rse.2018.12.031 |
[5] |
Martens B, Miralles D G, Lievens H, et al. GLEAM v3: Satellite-based land evaporation and root-zone soil moisture[J]. Geoscientific Model Development, 2017, 10(5): 1903-1925.
doi: 10.5194/gmd-10-1903-2017 |
[6] |
刘昌明, 张丹. 中国地表潜在蒸散发敏感性的时空变化特征分析[J]. 地理学报, 2011, 66(5): 579-588.
doi: 10.11821/xb201105001 |
[Liu Changming, Zhang Dan. Temporal and spatial change analysis of the sensitivity of potential evapotranspiration to meteorological influencing factors in China[J]. Acta Geographica Sinica, 2011, 66(5): 579-588.]
doi: 10.11821/xb201105001 |
|
[7] |
张巧凤, 刘桂香, 于红博, 等. 基于MOD16A2的锡林郭勒草原近14年的蒸散发时空动态[J]. 草地学报, 2016, 24(2): 286-293.
doi: 10.11733/j.issn.1007-0435.2016.02.007 |
[Zhang Qiaofeng, Liu Guixiang, Yu Hongbo, et al. Temporal and spatial dynamic of ET based on MOD16A2 in recent fourteen years in Xilingol Steppe[J]. Acta Agrestia Sinica, 2016, 24(2): 286-293.]
doi: 10.11733/j.issn.1007-0435.2016.02.007 |
|
[8] | 邓兴耀, 刘洋, 刘志辉, 等. 中国西北干旱区蒸散发时空动态特征[J]. 生态学报, 2017, 37(9): 2994-3008. |
[Deng Xingyao, Liu Yang, Liu Zhihui, et al. Temporal-spatial dynamic change characteristics of evapotranspiration in arid region of northwest China[J]. Acta Ecologica Sinica, 2017, 37(9): 2994-3008.] | |
[9] | 郑德凤, 詹诗瑶, 曹永强. 河北省潜在蒸散量与水分盈亏量时空动态特征分析[J]. 人民珠江, 2022, 43(3): 54-65. |
[Zheng Defeng, Zhan Shiyao, Cao Yongqiang. Analysis of spatiotemporal dynamic characteristics on potential evapotranspiration and water budget in Hebei Province[J]. Pearl River, 2022, 43(3): 54-65.] | |
[10] |
Pastorello G, Trotta C, Canfora E, et al. The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data[J]. Scientific Data, 2020, 7(1): 1-27.
doi: 10.1038/s41597-019-0340-y |
[11] | 朱炳海. 中国气候[M]. 北京: 科学出版社, 1962: 147-150. |
[Zhu Binghai. Climate of China[M]. Beijing: Science Press, 1962: 147-150.] | |
[12] |
Miralles D G, Holmes T R H, De Jeu R A M, et al. Global land-surface evaporation estimated from satellite-based observations[J]. Hydrology and Earth System Sciences, 2011, 15(2): 453-469.
doi: 10.5194/hess-15-453-2011 |
[13] |
Miralles D G, Van Den Berg M J, Gash J H, et al. El Niño-La Niña cycle and recent trends in continental evaporation[J]. Nature Climate Change, 2014, 4(2): 122-126.
doi: 10.1038/nclimate2068 |
[14] | Running S W, Mu Q Z, Zhao M S, et al. MODIS global terrestrial evapotranspiration (ET) product (MOD16A2/A3 and year-end gap-filled MOD16A2GF/A3GF) NASA Earth Observing System MODIS Land Algorithm (for collection 6)[M]. Washington, DC, USA: National Aeronautics and Space Administration, 2019: 1-37. |
[15] |
Farr T G, Rosen P A, Caro E, et al. The shuttle radar topography mission[J]. Reviews of Geophysics, 2007, 45(2): RG2004, doi: 10.1029/2005RG000183.
doi: 10.1029/2005RG000183 |
[16] | 陈龙. 基于不同遥感数据估算全球陆地初级生产力与蒸散发的对比研究[D]. 北京: 中国矿业大学, 2017. |
[Chen Long. Comparison of estimated global gross primary productivity and evapotranspiration based on different remote sensing data[D]. Beijing: China University of Mining and Technology, 2017.] | |
[17] | 谢旭红, 武磊, 魏健美, 等. 三种蒸散发产品在西北内陆河上游山区的适用性比较[J]. 兰州大学学报(自然科学版), 2021, 57(4): 437-446. |
[Xie Xuhong, Wu Lei, Wei Jianmei, et al. Applicability assessment of AET products in the alpine regions of northwestern China[J]. Journal of Lanzhou University (Natural Sciences Edition), 2021, 57(4): 437-446.] | |
[18] | 汪士为. 近20年内蒙古干旱时空动态及其对气候、蒸散发变化的响应[J]. 水土保持研究, 2022, 29(4): 231-239. |
[Wang Shiwei. Spatial and temporal dynamics of drought in Inner Mongolia in recent 20 years and its response to seasonal climate and evapotranspiration[J]. Research of Soil and Water Conservation, 2022, 29(4): 231-239.] | |
[19] | 张鹏, 张圣微, 徐冉, 等. 基于遥感的科尔沁沙地蒸散发时空动态[J]. 水土保持研究, 2021, 28(3): 399-405, 414-415. |
[Zhang Peng, Zhang Shengwei, Xu Ran, et al. Spatiotemporal dynamics of evapotranspiration in Horqin Sandy Land based on remote sensing[J]. Research of Soil and Water Conservation, 2021, 28(3): 399-405, 414-415.] | |
[20] | 张翔, 朱晓昱, 沈贝贝, 等. 呼伦贝尔植被蒸散发时空变化研究[J]. 中国农业资源与区划, 2020, 41(4): 308-316. |
[Zhang Xiang, Zhu Xiaoyu, Shen Beibei, et al. Analysis of temporal and spatial variation of vegetation evapotranspiration in Hulun Buir[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2020, 41(4): 308-316.] | |
[21] |
Milich L, Weiss E. GAC NDVI interannual coefficient of variation (CoV) images: Ground truth sampling of the Sahel along north-south transects[J]. International Journal of Remote Sensing, 2000, 21(2): 235-260.
doi: 10.1080/014311600210812 |
[22] | 张钊, 陈宝瑞, 辛晓平. 1960-2015年呼伦贝尔草原气温和降水格局变化特征[J]. 中国农业资源与区划, 2018, 39(12): 121-128. |
[Zhang Zhao, Chen Baorui, Xin Xiaoping. Variations of temperature and precipitation pattern in Hulunber grassland from 1960 to 2015[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2018, 39(12): 121-128.] | |
[23] | 谷佳贺, 薛华柱, 董国涛, 等. 黄河流域NDVI/土地利用对蒸散发时空变化的影响[J]. 干旱区地理, 2021, 44(1): 158-167. |
[Gu Jiahe, Xue Huazhu, Dong Guotao, et al. Effects of NDVI/land-use on spatiotemporal changes of evapotranspiration in the Yellow River Basin[J]. Arid Land Geography, 2021, 44(1): 158-167.] | |
[24] |
Fensholt R, Langanke T, Rasmussen K, et al. Greenness in semi-arid areas across the globe 1981-2007: An earth observing satellite based analysis of trends and drivers[J]. Remote Sensing of Environment, 2012, 121: 144-158.
doi: 10.1016/j.rse.2012.01.017 |
[25] |
Jiapaer G, Liang S L, Yi Q X, et al. Vegetation dynamics and responses to recent climate change in Xinjiang using leaf area index as an indicator[J]. Ecological Indicators, 2015, 58: 64-76.
doi: 10.1016/j.ecolind.2015.05.036 |
[26] | Zhang H F, Shu Y T, Yang O. Estimation of Hurst parameter by variance-time plots[C]// 1997 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing, PACRIM. 10 Years Networking the Pacific Rim, 1987-1997. Canada: IEEE, 1997, 2: 883-886. |
[27] | 陈耀亮. 干旱区内陆河流域土地利用/土地覆被变化及其对蒸散发的影响[D]. 杭州: 浙江大学, 2018. |
[Chen Yaoliang. Land-use and land-cover change and its impacts on evapotranspiration in inland river basin of arid region[D]. Hangzhou: Zhejiang University, 2018.] | |
[28] | 詹明月. 基于模式数据的中国植被绿化对陆地蒸散发影响研究[D]. 南京: 南京信息工程大学, 2022. |
[Zhan Mingyue. Effects of vegetation greening on land evapotranspiration in China based on model data[D]. Nanjing: Nanjing University of Information Science & Technology, 2022.] | |
[29] | 杨晓慧, 于凤存. 巢湖芦苇湿地蒸散发量及其影响因素分析[J]. 治淮, 2022(4): 21-23. |
[Yang Xiaohui, Yu Fengcun. Analysis of evapotranspiration and its influencing factors in reed wetland of Chaohu Lake[J]. Harnessing the Huaihe River, 2022(4): 21-23.] |
[1] | 朱磊, 李燕楠, 徐佳慧, 胡静, 朱芳, 梁茫茫. 中国冰雪旅游地空间分布格局及成因[J]. 干旱区地理, 2024, 47(8): 1399-1410. |
[2] | 朱瑷嫒, 殷颂葵, 刘琼慧. 中国西北地区农业生态效率时空分异及影响因素研究[J]. 干旱区地理, 2024, 47(7): 1210-1219. |
[3] | 徐伟, 刘振领. 内蒙古光伏开发空间适宜性及减排效益研究[J]. 干旱区地理, 2024, 47(4): 684-694. |
[4] | 唐宇, 薛东前, 宋永永, 叶昊, 王莎. 中国夜间文旅消费集聚区空间格局及影响机理[J]. 干旱区地理, 2024, 47(3): 485-495. |
[5] | 马亚丽, 牛最荣, 孙栋元. 河西走廊潜在蒸散发时空格局变化与气象因素的关系[J]. 干旱区地理, 2024, 47(2): 192-202. |
[6] | 周霞, 王佳. 中国省域经济韧性与生态效率测度及其协同演化分析[J]. 干旱区地理, 2024, 47(2): 319-331. |
[7] | 李春华, 朱飙, 杨金虎, 刘晨汐, 段欣妤, 黄鹏程. 中国区域气候干湿与土壤湿度变化特征及其差异性分析[J]. 干旱区地理, 2024, 47(10): 1674-1687. |
[8] | 卢冬燕, 朱秀芳, 刘婷婷, 张世喆. 2 ℃温升情景下中国气象干旱特征变化[J]. 干旱区地理, 2023, 46(8): 1227-1237. |
[9] | 陈潘愉, 童陆亿. 中国主要城市居民住房支付能力演化特征研究[J]. 干旱区地理, 2023, 46(8): 1324-1332. |
[10] | 高晓宇, 郝海超, 张雪琪, 陈亚宁. 中国西北干旱区植被水分利用效率变化对气象要素的响应——以新疆为例[J]. 干旱区地理, 2023, 46(7): 1111-1120. |
[11] | 荣丽华, 李伊彤. 国土空间规划背景下畜牧业生产适宜性评价与分区——以锡林郭勒盟镶黄旗为例[J]. 干旱区地理, 2023, 46(7): 1166-1175. |
[12] | 杨一飞, 杨鹏年, 汪昌树, 寇鑫, 谭翻, 徐杰, 王翠. 新疆焉耆盆地农田耗水有效性评价[J]. 干旱区地理, 2023, 46(5): 730-741. |
[13] | 孔德明, 郝丽莎, 夏四友, 李红波. 粮食单产视角下中国北方农牧交错带粮食安全研究[J]. 干旱区地理, 2023, 46(5): 782-792. |
[14] | 张勇军, 杨余辉, 胡义成, 冯先成, 杨景燕. 新疆喀什河流域水化学时空变化特征及灌溉适应性评价[J]. 干旱区地理, 2023, 46(4): 583-594. |
[15] | 朱磊, 李燕楠, 胡静, 田小波, 徐佳慧, 卿琪. 中国研学实践基地空间格局的多尺度特征及影响机理研究[J]. 干旱区地理, 2023, 46(4): 625-635. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 244
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 588
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
|