干旱区地理 ›› 2023, Vol. 46 ›› Issue (9): 1432-1442.doi: 10.12118/j.issn.1000-6060.2022.555 cstr: 32274.14.ALG2022555
田昊玮1,2(),陈伏龙1,龙爱华1,2(
),刘静2,3,海洋2
收稿日期:
2022-10-24
修回日期:
2022-12-14
出版日期:
2023-09-25
发布日期:
2023-09-28
作者简介:
田昊玮(1998-),男,硕士研究生,主要从事水文水资源研究. E-mail: 基金资助:
TIAN Haowei1,2(),CHEN Fulong1,LONG Aihua1,2(
),LIU Jing2,3,HAI Yang2
Received:
2022-10-24
Revised:
2022-12-14
Published:
2023-09-25
Online:
2023-09-28
摘要:
冰川径流是西北干旱区径流的主要组成部分,研究未来气候变化对冰川径流的影响对西北干旱区径流至关重要。以博尔塔拉河上游源流区为研究区,构建嵌入冰川模块的SWAT模型,模拟温泉水文站1972—2018年月径流过程,并在此基础上研究了气候变化情景下(RCP4.5和RCP8.5)未来(2020—2050年)气候变化对冰川径流的影响。结果表明:SWAT模型能够很好地模拟源流区径流变化过程,在整个模拟期间,径流数据的纳什系数(NSE)为0.82,偏差百分比(PBIAS)为-3.22%,均方根误差与实测值标准差的比值(RSR)为0.42,决定性系数(R2)为0.84,模型性能评定为优。根据CMIP5气候模式2种情景的模拟结果,2种情景模拟未来总径流都呈现出增加趋势,分别将以0.31×108 m3·(10a)-1和0.40×108 m3·(10a)-1的速度继续增加,冰川径流占比较历史时期的27.61%分别提升了4.84%和9.38%。冰川径流增加是径流量增加的主要原因。通过相关性分析发现,随着气温的升高,冰川消融时间提前,冰川消融加速,冰川积累时间减少,导致冰川面积进一步的缩减。研究结果可为博河地区水文资料历史变化、未来演变趋势和预防气候变化带来的潜在风险提供依据。
田昊玮, 陈伏龙, 龙爱华, 刘静, 海洋. 博尔塔拉河源流区径流对气候变化的响应及预测[J]. 干旱区地理, 2023, 46(9): 1432-1442.
TIAN Haowei, CHEN Fulong, LONG Aihua, LIU Jing, HAI Yang. Response and prediction of runoff to climate change in the headwaters of the Bortala River[J]. Arid Land Geography, 2023, 46(9): 1432-1442.
表2
CMIP5全球气候模式基本信息"
编号 | CMIP5模式 | 所属国家 | 所属机构 | 水平 分辨率 |
---|---|---|---|---|
1 | ACCESS1-0 | 澳大利亚 | CSIRO-BOM | 1.9°×1.2° |
2 | ACCESS1-3 | 澳大利亚 | CSIRO-BOM | 1.9°×1.2° |
3 | NRM-CM5 | 法国 | CNRM-CERFACS | 1.4°×1.4° |
4 | HadGEM2-CC | 英国 | MOHC | 1.9°×1.2° |
5 | HadGEM2-ES | 英国 | MOHC | 1.9°×1.2° |
6 | MIROC5 | 日本 | MIROC | 1.4°×1.4° |
7 | MRI-CGCM3 | 日本 | MRI | 1.1°×1.1° |
8 | BCC-CSM1-1-M | 中国 | NCC | 1.1°×1.1° |
表3
参数率定结果"
参数模块 | 参数 | 物理意义 | 范围 | 参数最优值 |
---|---|---|---|---|
径流 | ALPHA_BF.gw | 基流α因子/d | [0, 1] | 0.0084 |
GW_DELAY.gw | 地下水的时间延迟/d | [0, 500] | 120.00 | |
GWQMIN.gw | 发生回归流所需的浅水层的水位阈值/mm | [0, 5000] | 100.00 | |
REVAPMN.gw | 渗入深水层所需的含水层的水位阈值/mm | [0, 1000] | 1000.00 | |
CH_K2.rte | 主河道冲积物的有效渗透系数/mm·h-1 | [0, 500] | 30.00 | |
ESCO.hru | 土壤蒸发补偿因子 | [0, 1] | 0.70 | |
融雪 | SFTMP.bsn | 降雪气温/℃ | [-5, 5] | 1.00 |
SMTMP.bsn | 融雪气温/℃ | [-5, 5] | 0.50 | |
SMFMX.bsn | 6月21日的融雪因子/mm·℃-1·d-1 | [0, 10] | 6.50 | |
SMFMN.bsn | 12月21日的融雪因子/mm·℃-1·d-1 | [0, 10] | 1.50 | |
TIMP.bsn | 积雪温度滞后因子 | [0.01, 1.00] | 1.00 | |
冰川 | Bmelt6 | 6月21日的融冰因子/mm·℃-1·d-1 | [1.4, 16.0] | 3.50 |
Bmelt12 | 12月21日的融冰因子/mm·℃-1·d-1 | [1.4, 16.0] | 0.50 | |
gmlt_tmp | 融冰温度阈值/℃ | [-5, 5] | 1.44 |
表5
历史水文数据突变对比分析"
历史 | 春季 | 夏季 | |||||
---|---|---|---|---|---|---|---|
降水 | 气温 | 径流 | 降水 | 气温 | 径流 | ||
降水量 | 1.000 | 0.541** | 0.013 | 1.000 | -0.143 | 0.178* | |
气温 | 0.541** | 1.000 | -0.237** | -0.143 | 1.000 | 0.503** | |
径流 | 0.013 | -0.237 | 1.000 | 0.178* | 0.503** | 1.000 | |
历史 | 秋季 | 冬季 | |||||
降水 | 气温 | 径流 | 降水 | 气温 | 径流 | ||
降水量 | 1.000 | 0.360** | 0.178* | 1.000 | 0.253** | 0.017 | |
气温 | 0.360** | 1.000 | -0.173* | 0.253** | 1.000 | -0.060 | |
径流 | 0.178* | -0.173 | 1.000 | 0.017 | -0.060 | 1.000 |
表6
RCP4.5情景模式径流、气温、降水相关系数"
RCP4.5 | 春季 | 夏季 | |||||
---|---|---|---|---|---|---|---|
降水 | 气温 | 径流 | 降水 | 气温 | 径流 | ||
降水 | 1.000 | 0.704** | 0.321** | 1.000 | -0.004 | -0.120 | |
气温 | 0.704** | 1.000 | 0.486** | -0.004 | 1.000 | 0.733** | |
径流 | 0.321** | 0.486** | 1.000 | -0.120 | 0.733** | 1.000 | |
RCP4.5 | 秋季 | 冬季 | |||||
降水 | 气温 | 径流 | 降水 | 气温 | 径流 | ||
降水 | 1.000 | 0.004 | 0.103 | 1.000 | 0.124 | -0.062 | |
气温 | 0.004 | 1.000 | 0.028 | 0.124 | 1.000 | 0.042 | |
径流 | 0.103 | 0.028 | 1.000 | -0.062 | 0.042 | 1.000 |
表7
RCP8.5情景模式径流、气温、降水相关系数"
RCP8.5 | 春季 | 夏季 | |||||
---|---|---|---|---|---|---|---|
降水 | 气温 | 径流 | 降水 | 气温 | 径流 | ||
降水 | 1.000 | 0.641** | 0.236** | 1.000 | -0.395** | -0.155 | |
气温 | 0.641** | 1.000 | 0.540** | -0.395** | 1.000 | 0.870** | |
径流 | 0.236** | 0.540** | 1.000 | -0.155 | 0.870** | 1.000 | |
RCP8.5 | 秋季 | 冬季 | |||||
降水 | 气温 | 径流 | 降水 | 气温 | 径流 | ||
降水 | 1.000 | -0.135 | -0.045 | 1.000 | 0.261* | 0.142 | |
气温 | -0.135 | 1.000 | 0.203 | 0.261* | 1.000 | 0.113 | |
径流 | -0.045 | 0.203 | 1.000 | 0.142 | 0.113 | 1.000 |
[1] | 姜大膀, 王娜. IPCC AR6报告解读:水循环变化[J]. 气候变化研究进展, 2021, 17(6): 699-704. |
[Jiang Dabang, Wang Na. Water cycle changes: Interpretation of IPCC AR6[J]. Climate Change Research, 2021, 17(6): 699-704.] | |
[2] | 陈亚宁, 李稚, 方功焕. 中亚天山地区关键水文要素变化与水循环研究进展[J]. 干旱区地理, 2022, 45(1): 1-8. |
[Chen Yaning, Li Zhi, Fang Gonghuan. Changes of key hydrological elements and research progress of water cycle in the Tianshan Mountains, Central Asia[J]. Arid Land Geography, 2022, 45(1): 1-8.] | |
[3] | 王文, 马骏. 若干水文预报方法综述[J]. 水利水电科技进展, 2005(1): 56-60. |
[Wang Wen, Ma Jun. Review on some methods for hydrological forecasting[J]. Advances in Science and Technology of Water, 2005(1): 56-60.] | |
[4] | 雷晓辉, 王浩, 廖卫红, 等. 变化环境下气象水文预报研究进展[J]. 水利学报, 2018, 49(1): 9-18. |
[Lei Xiaohui, Wang Hao, Liao Weihong, et al. Advance in hydro-meteorological forecast under changing environment[J]. Journal of Hydraulic Engineering, 2018, 49(1): 9-18.] | |
[5] | 史晓亮, 杨志勇, 严登华, 等. 滦河流域土地利用/覆被变化的水文响应[J]. 水科学进展, 2014, 25(1): 21-27. |
[Shi Xiaoliang, Yang Zhiyong, Yan Denghua, et al. On hydrological response to land-use/cover change in Luanhe River Basin[J]. Advances in Water Science, 2014, 25(1): 21-27.] | |
[6] |
包鑫, 江燕. 半干旱半湿润地区流域非点源污染负荷模型研究进展[J]. 应用生态学报, 2020, 31(2): 674-684.
doi: 10.13287/j.1001-9332.202002.039 |
[Bao Xin, Jiang Yan. Research progress on non-point source pollution models for semi-arid and semi-humid watersheds[J]. Chinese Journal of Applied Ecology, 2020, 31(2): 674-684.]
doi: 10.13287/j.1001-9332.202002.039 |
|
[7] |
Fabre C, Sauvage S, Tananaev N, et al. Assessment of sediment and organic carbon exports into the Arctic Ocean: The case of the Yenisei River Basin[J]. Water Research, 2019, 158: 118-135.
doi: S0043-1354(19)30326-4 pmid: 31022529 |
[8] | 孙占东, 黄群. 长江流域土地利用/覆被变化的大尺度水文效应[J]. 长江流域资源与环境, 2019, 28(11): 2703-2710. |
[Sun Zhandong, Huang Qun. Land use-cover change and its large scale hydrological effects in Yangtze River Basin[J]. Resources and Environment in the Yangtze Basin, 2019, 28(11): 2703-2710.] | |
[9] | 周帅, 王义民, 郭爱军, 等. SWAT模型参数不确定性对黄河上游径流模拟的影响[J]. 西北农林科技大学学报(自然科学版), 2019, 47(8): 144-154. |
[Zhou Shuai, Wang Yimin, Guo Aijun, et al. Influence of uncertainties in SWAT model parmeters on runoff simulation in upper reaches of the Yellow River[J]. Journal of Northwest A & F University (Natural Science Edition), 2019, 47(8): 144-154.] | |
[10] | Avellaneda P M, Ficklin D L, Lowry C S, et al. Improving hydrological models with the assimilation of crowdsourced data[J]. Water Resources Research, 2020, 56(5): e2019WR026325, doi: 10.1029/2019WR026325. |
[11] | 任才, 龙爱华, 於嘉闻, 等. 气候与下垫面变化对叶尔羌河源流径流的影响[J]. 干旱区地理, 2021, 44(5): 1373-1383. |
[Ren Cai, Long Aihua, Yu Jiawen, et al. Effects of climate and underlying surface changes on runoff of Yarkant River source[J]. Arid Land Geography, 2021, 44(5): 1373-1383.] | |
[12] | Shukla S, Jain S K, Kansal M L. Hydrological modelling of a snow/glacier-fed western Himalayan Basin to simulate the current and future streamflows under changing climate scenarios[J]. Science of the Total Environment, 2021, 795, doi: 10.1016/J.SCITOTENV.2021.148871. |
[13] | Cao Y, Fu C S, Wang X, et al. Decoding the dramatic hundred-year water level variations of a typical great lake in semi-arid region of northeastern Asia[J]. Science of the Total Environment, 2021, 770, doi: 10.1016/J.SCITOTENV.2021.145353. |
[14] | Zhao H L, Li H Y, Xuan Y Q, et al. Improvement of the SWAT model for snowmelt runoff simulation in seasonal snowmelt area using remote sensing data[J]. Remote Sensing, 2022, 14(22): 5823, doi: 10.3390/RS14225823. |
[15] | 杨明智, 许继军, 桑连海, 等. 基于水循环的分布式水资源调配模型开发与应用[J]. 水利学报, 2022, 53(4): 456-470. |
[Yang Mingzhi, Xu Jijun, Sang Lianhai, et al. Development and application of the distributed water resources allocation and regulation model based on hydrological cycle[J]. Journal of Hydraulic Engineering, 2022, 53(4): 456-470.] | |
[16] | Yin Z L, Feng Q, Liu S Y, et al. The spatial and temporal contribution of glacier runoff to watershed discharge in the Yarkant River Basin, northwest China[J]. Water, 2017, 9(3): 159, doi: 10.3390/w9030159. |
[17] | 孟现勇, 王浩, 雷晓辉, 等. 基于CMDAS驱动SWAT模式的精博河流域水文相关分量模拟、验证及分析[J]. 生态学报, 2017, 37(21): 7114-7127. |
[Meng Xianyong, Wang Hao, Lei Xiaohui, et al. Simulation, validation, and analysis of the hydrological components of Jing and Bo River Basin based on the SWAT model driven by CMADS[J]. Acta Ecologica Sinica, 2017, 37(21): 7114-7127.] | |
[18] | 王瑾杰, 丁建丽, 张喆, 等. 干旱区降雨、融雪混合补给下的径流模拟研究——以博尔塔拉河上游流域为例[J]. 干旱区地理, 2016, 39(6): 1238-1246. |
[Wang Jinjie, Ding Jianli, Zhang Zhe, et al. Simulation of runoff of arid area with rainfall and snowmelt based on GF-1 satellite: A case of Bortala River[J]. Arid Land Geography, 2016, 39(6): 1238-1246.] | |
[19] |
张飞, 王维维, 辛红云, 等. 新疆艾比湖流域河湖水质变化(2005—2020年)[J]. 湖泊科学, 2022, 34(2): 478-495.
doi: 10.18307/2022.0210 |
[Zhang Fei, Wang Weiwei, Xin Hongyun, et al. Changes of river and lakes water quality in Lake Ebinur Basin, Xinjiang (2005—2020)[J]. Journal of Lake Sciences, 2022, 34(2): 478-495.]
doi: 10.18307/2022.0210 |
|
[20] | 丁启振, 雷米, 周金龙, 等. 博尔塔拉河上游河谷地区水化学特征及水质评价[J]. 干旱区研究, 2022, 39(3): 829-840. |
[Ding Qizhen, Lei Mi, Zhou Jinlong, et al. An assessment of groundwater, surface water, and hydrochemical characteristics in the upper valley of the Bortala River[J]. Arid Zone Research, 2022, 39(3): 829-840.] | |
[21] | 刘世薇, 周华荣, 梁雪琼, 等. 艾比湖流域降水与径流变化特征分析[J]. 水土保持学报, 2011, 25(5): 21-25. |
[Liu Shiwei, Zhou Huarong, Liang Xueqiong, et al. Trend analysis of the precipitation and runoff in Ebinur Lake Basin[J]. Journal of Soil and Water Conservation, 2011, 25(5): 21-25.] | |
[22] | 郝帅, 李发东, 李艳红, 等. 艾比湖流域降水、地表水和地下水稳定同位素特征[J]. 干旱区地理, 2021, 44(4): 934-942. |
[Hao Shuai, Li Fadong, Li Yanhong, et al. Stable isotopes characteristics of precipitation, surface water and groundwater in Ebinur Lake Basin[J]. Arid Land Geography, 2021, 44(4): 934-942.] | |
[23] |
甘容, 徐孟莎, 左其亭. 伊洛河流域基流分割及其时空变化特征[J]. 资源科学, 2022, 44(9): 1824-1834.
doi: 10.18402/resci.2022.09.07 |
[Gan Rong, Xu Mengsha, Zuo Qiting. Baseflow separation and spatiotemporal variation characteristics in the Yiluo River Basin[J]. Resources Science, 2022, 44(9): 1824-1834.]
doi: 10.18402/resci.2022.09.07 |
|
[24] | 张田田, 陈有超, 李潜, 等. 土地利用变化对丹江流域径流和泥沙时空格局的影响[J]. 长江流域资源与环境, 2022, 31(8): 1797-1811. |
[Zhang Tiantian, Chen Youchao, Li Qian, et al. Effects of land-use change on the spatio-temporal patterns of runoff and sediment in the Danjiang River Basin[J]. Resources and Environment in the Yangtze Basin, 2022, 31(8): 1797-1811.] | |
[25] |
侯玥, 徐成东, 刘伟, 等. 气候变化情景下淮河上游流域氮排放预测研究[J]. 地球信息科学学报, 2022, 24(8): 1558-1574.
doi: 10.12082/dqxxkx.2022.210546 |
[Hou Yue, Xu Chengdong, Liu Wei, et al. Prediction of nitrogen emission in the upper reaches of the Huai River Basin under climate change scenarios[J]. Journal of Geo-information Science, 2022, 24(8): 1558-1574.]
doi: 10.12082/dqxxkx.2022.210546 |
|
[26] | 孙瑞, 张雪芹. 基于SWAT模型的流域径流模拟研究进展[J]. 水文, 2010, 30(3): 28-32, 47. |
[Sun Rui, Zhang Xueqin. Progress in application of watershed runoff simulation based on SWAT[J]. Journal of China Hydrology, 2010, 30(3): 28-32, 47.] | |
[27] | 魏潇娜, 龙爱华, 尹振良, 等. 和田河流域冰川径流对气候变化响应的模拟分析[J]. 水资源保, 2022, 38(4): 137-144. |
[Wei Xiaona, Long Aihua, Yin Zhenliang, et al. Simulation of response of glacier runoff to climate change in the Hotan River Basin[J]. Water Resources Protection, 2022, 38(4): 137-144.] | |
[28] | Liu J, Long A H, Deng X Y, et al. The impact of climate change on hydrological processes of the glacierized watershed and projections[J]. Remote Sensing, 2022, 14(6): 1314, doi: 10.3390/rs14061314. |
[29] | Moriasi D N, Arnold J G, Liew M, et al. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations[J]. Transactions of the ASABE, 2007, 50(3): 855-900. |
[30] | Mehrotra R, Sharma A. A robust alternative for correcting systematic biases in multi-variable climate model simulations[J]. Environmental Modelling and Software, 139, 105019, doi:10.1016/j.envsoft.2021.105019. |
[31] | 吴佳, 周波涛, 徐影. 中国平均降水和极端降水对气候变暖的响应: CMIP5模式模拟评估和预估[J]. 地球物理学报, 2015, 58(9): 3048-3060. |
[Wu Jia, Zhou Botao, Xu Ying. Response of precipitation and its extremes over China to warming: CMIP5 simulation and projection[J]. Chinese Journal of Geophysics, 2015, 58(9): 3048-3060.] | |
[32] | 马占云, 任佳雪, 陈海涛, 等. IPCC第一工作组评估报告分析及建议[J]. 环境科学研究, 2022, 35(11): 2550-2558. |
[Ma Zhanyun, Ren Jiaxue, Chen Haitao, et al. Analysis and recommendations of IPCC working group I assessment report[J]. Research of Environmental Sciences, 2022, 35(11): 2550-2558.] | |
[33] |
Zhang Q, Yang J H, Wang W, et al. Climatic warming and humidification in the arid region of northwest China: Multi-scale characteristics and impacts on ecological vegetation[J]. Journal of Meteorological Research, 2021, 35(1): 113-127.
doi: 10.1007/s13351-021-0105-3 |
[34] | 迪丽努尔·阿吉, 近藤昭彦, 肖開提·阿吉, 等. 博河流域气候变化及其与径流量的关系研究[J]. 资源科学, 2014, 36(10): 2123-2130. |
[Aji Dilinuer, Akihiko Kondoh, Aji Xiaokaiti, et al. Climatic change in the Bortala River Basin and runoff volume[J]. Resources Science, 2014, 36(10): 2123-2130.] | |
[35] |
Kraaijenbrink P D A, Bierkens M F P, Lutz A F, et al. Impact of a global temperature rise of 1.5 degrees Celsius on Asia’s glaciers[J]. Nature, 2017, 549(7671): 257-260.
doi: 10.1038/nature23878 |
[36] | 曾庆江. 博尔塔拉谷地对径流的调节作用[J]. 干旱区地理, 1994, 17(4): 9-14. |
[Zeng Qingjiang. Regulation of Bortala valley on runoff[J]. Arid Land Geography, 1994, 17(4): 9-14.] | |
[37] |
赵求东, 赵传成, 秦艳, 等. 天山南坡高冰川覆盖率的木扎提河流域水文过程对气候变化的响应[J]. 冰川冻土, 2020, 42(4): 1285-1298.
doi: 10.7522/j.issn.1000-0240.2020.0016 |
[Zhao Qiudong, Zhao Chuancheng, Qin Yan, et al. Response of the hydrological processes to climate change in the Muzati River Basin with high glacierization, southern slope of the Tianshan Mountains[J]. Journal of Glaciology and Geocryology, 2020, 42(4): 1285-1298.]
doi: 10.7522/j.issn.1000-0240.2020.0016 |
[1] | 康立民, 滕心如, 车佳航, 怀保娟. 昆仑山北坡区域积雪时空变化特征[J]. 干旱区地理, 2024, 47(9): 1462-1471. |
[2] | 王南, 刘泽轩, 郑江华, 仲涛, 孟乘枫. 天山冰湖分布时空特征及驱动力分析[J]. 干旱区地理, 2024, 47(9): 1472-1481. |
[3] | 超宝, 赵媛媛, 武海岩, 李媛, 苏宁. 2000—2020年蒙古高原生态系统服务及其对气候因子的响应[J]. 干旱区地理, 2024, 47(9): 1577-1586. |
[4] | 夏婷婷, 薛璇, 王灏伟, 徐文哲, 盛紫怡, 汪洋. 昆仑山北坡陆地水储量变化及其驱动因素分析[J]. 干旱区地理, 2024, 47(8): 1292-1303. |
[5] | 刘渤, 陈伏龙, 唐豪, 姜龙, 王统霞. 再分析数据在玛纳斯河径流模拟中适用性研究[J]. 干旱区地理, 2024, 47(8): 1348-1357. |
[6] | 朱成刚, 陈亚宁, 张明军, 车彦军, 孙美平, 赵锐锋, 汪洋, 刘玉婷. 昆仑山北坡水资源科学考察初报[J]. 干旱区地理, 2024, 47(7): 1097-1105. |
[7] | 张晶, 马龙, 刘廷玺, 孙柏林, 乔子戌. 基于贺兰山青海云杉(Picea crassifolia)树轮对过去202 a最低气温的重建[J]. 干旱区地理, 2024, 47(6): 909-921. |
[8] | 樊静, 申彦波, 常蕊. 气候变化对太阳能资源评估典型气象年选取的影响[J]. 干旱区地理, 2024, 47(6): 922-931. |
[9] | 利辉, 刘铁军, 王少慧, 刘东伟. 2001—2021年内蒙古荒漠草原水分利用效率时空变化特征及影响因素研究[J]. 干旱区地理, 2024, 47(6): 993-1003. |
[10] | 向燕芸, 王弋, 陈亚宁, 张齐飞, 张玉杰. 基于CMIP6模式的叶尔羌河流域未来水文干旱风险预估[J]. 干旱区地理, 2024, 47(5): 798-809. |
[11] | 赵明杰, 王宁练, 石晨烈, 侯靖琪. 2000—2020年中亚大型湖泊湖冰物候时空变化[J]. 干旱区地理, 2024, 47(4): 561-575. |
[12] | 王淑芝, 温得平. 青藏高原大通河流域径流变化归因分析[J]. 干旱区地理, 2024, 47(2): 203-213. |
[13] | 常学向, 赵文智, 田全彦. 干旱区气候变化及其对山地森林生态系统稳定性和水文过程影响研究进展[J]. 干旱区地理, 2024, 47(2): 228-236. |
[14] | 陈丽花, 车彦军, 曹昀, 张明军, 谷来磊, 吴佳康, 吕卫卫. 东昆仑鲸鱼湖流域冰川、湖泊对气候变化的响应[J]. 干旱区地理, 2024, 47(10): 1640-1650. |
[15] | 孙金容, 李兴, 魏敬铤. 近40 a流域气候变化与人类活动双重驱动下乌梁素海面积变化特征研究[J]. 干旱区地理, 2024, 47(10): 1688-1699. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 706
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 364
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
|