[1] |
姜大膀, 王娜. IPCC AR6报告解读:水循环变化[J]. 气候变化研究进展, 2021, 17(6): 699-704.
|
|
[Jiang Dabang, Wang Na. Water cycle changes: Interpretation of IPCC AR6[J]. Climate Change Research, 2021, 17(6): 699-704.]
|
[2] |
陈亚宁, 李稚, 方功焕. 中亚天山地区关键水文要素变化与水循环研究进展[J]. 干旱区地理, 2022, 45(1): 1-8.
|
|
[Chen Yaning, Li Zhi, Fang Gonghuan. Changes of key hydrological elements and research progress of water cycle in the Tianshan Mountains, Central Asia[J]. Arid Land Geography, 2022, 45(1): 1-8.]
|
[3] |
王文, 马骏. 若干水文预报方法综述[J]. 水利水电科技进展, 2005(1): 56-60.
|
|
[Wang Wen, Ma Jun. Review on some methods for hydrological forecasting[J]. Advances in Science and Technology of Water, 2005(1): 56-60.]
|
[4] |
雷晓辉, 王浩, 廖卫红, 等. 变化环境下气象水文预报研究进展[J]. 水利学报, 2018, 49(1): 9-18.
|
|
[Lei Xiaohui, Wang Hao, Liao Weihong, et al. Advance in hydro-meteorological forecast under changing environment[J]. Journal of Hydraulic Engineering, 2018, 49(1): 9-18.]
|
[5] |
史晓亮, 杨志勇, 严登华, 等. 滦河流域土地利用/覆被变化的水文响应[J]. 水科学进展, 2014, 25(1): 21-27.
|
|
[Shi Xiaoliang, Yang Zhiyong, Yan Denghua, et al. On hydrological response to land-use/cover change in Luanhe River Basin[J]. Advances in Water Science, 2014, 25(1): 21-27.]
|
[6] |
包鑫, 江燕. 半干旱半湿润地区流域非点源污染负荷模型研究进展[J]. 应用生态学报, 2020, 31(2): 674-684.
doi: 10.13287/j.1001-9332.202002.039
|
|
[Bao Xin, Jiang Yan. Research progress on non-point source pollution models for semi-arid and semi-humid watersheds[J]. Chinese Journal of Applied Ecology, 2020, 31(2): 674-684.]
doi: 10.13287/j.1001-9332.202002.039
|
[7] |
Fabre C, Sauvage S, Tananaev N, et al. Assessment of sediment and organic carbon exports into the Arctic Ocean: The case of the Yenisei River Basin[J]. Water Research, 2019, 158: 118-135.
doi: S0043-1354(19)30326-4
pmid: 31022529
|
[8] |
孙占东, 黄群. 长江流域土地利用/覆被变化的大尺度水文效应[J]. 长江流域资源与环境, 2019, 28(11): 2703-2710.
|
|
[Sun Zhandong, Huang Qun. Land use-cover change and its large scale hydrological effects in Yangtze River Basin[J]. Resources and Environment in the Yangtze Basin, 2019, 28(11): 2703-2710.]
|
[9] |
周帅, 王义民, 郭爱军, 等. SWAT模型参数不确定性对黄河上游径流模拟的影响[J]. 西北农林科技大学学报(自然科学版), 2019, 47(8): 144-154.
|
|
[Zhou Shuai, Wang Yimin, Guo Aijun, et al. Influence of uncertainties in SWAT model parmeters on runoff simulation in upper reaches of the Yellow River[J]. Journal of Northwest A & F University (Natural Science Edition), 2019, 47(8): 144-154.]
|
[10] |
Avellaneda P M, Ficklin D L, Lowry C S, et al. Improving hydrological models with the assimilation of crowdsourced data[J]. Water Resources Research, 2020, 56(5): e2019WR026325, doi: 10.1029/2019WR026325.
|
[11] |
任才, 龙爱华, 於嘉闻, 等. 气候与下垫面变化对叶尔羌河源流径流的影响[J]. 干旱区地理, 2021, 44(5): 1373-1383.
|
|
[Ren Cai, Long Aihua, Yu Jiawen, et al. Effects of climate and underlying surface changes on runoff of Yarkant River source[J]. Arid Land Geography, 2021, 44(5): 1373-1383.]
|
[12] |
Shukla S, Jain S K, Kansal M L. Hydrological modelling of a snow/glacier-fed western Himalayan Basin to simulate the current and future streamflows under changing climate scenarios[J]. Science of the Total Environment, 2021, 795, doi: 10.1016/J.SCITOTENV.2021.148871.
|
[13] |
Cao Y, Fu C S, Wang X, et al. Decoding the dramatic hundred-year water level variations of a typical great lake in semi-arid region of northeastern Asia[J]. Science of the Total Environment, 2021, 770, doi: 10.1016/J.SCITOTENV.2021.145353.
|
[14] |
Zhao H L, Li H Y, Xuan Y Q, et al. Improvement of the SWAT model for snowmelt runoff simulation in seasonal snowmelt area using remote sensing data[J]. Remote Sensing, 2022, 14(22): 5823, doi: 10.3390/RS14225823.
|
[15] |
杨明智, 许继军, 桑连海, 等. 基于水循环的分布式水资源调配模型开发与应用[J]. 水利学报, 2022, 53(4): 456-470.
|
|
[Yang Mingzhi, Xu Jijun, Sang Lianhai, et al. Development and application of the distributed water resources allocation and regulation model based on hydrological cycle[J]. Journal of Hydraulic Engineering, 2022, 53(4): 456-470.]
|
[16] |
Yin Z L, Feng Q, Liu S Y, et al. The spatial and temporal contribution of glacier runoff to watershed discharge in the Yarkant River Basin, northwest China[J]. Water, 2017, 9(3): 159, doi: 10.3390/w9030159.
|
[17] |
孟现勇, 王浩, 雷晓辉, 等. 基于CMDAS驱动SWAT模式的精博河流域水文相关分量模拟、验证及分析[J]. 生态学报, 2017, 37(21): 7114-7127.
|
|
[Meng Xianyong, Wang Hao, Lei Xiaohui, et al. Simulation, validation, and analysis of the hydrological components of Jing and Bo River Basin based on the SWAT model driven by CMADS[J]. Acta Ecologica Sinica, 2017, 37(21): 7114-7127.]
|
[18] |
王瑾杰, 丁建丽, 张喆, 等. 干旱区降雨、融雪混合补给下的径流模拟研究——以博尔塔拉河上游流域为例[J]. 干旱区地理, 2016, 39(6): 1238-1246.
|
|
[Wang Jinjie, Ding Jianli, Zhang Zhe, et al. Simulation of runoff of arid area with rainfall and snowmelt based on GF-1 satellite: A case of Bortala River[J]. Arid Land Geography, 2016, 39(6): 1238-1246.]
|
[19] |
张飞, 王维维, 辛红云, 等. 新疆艾比湖流域河湖水质变化(2005—2020年)[J]. 湖泊科学, 2022, 34(2): 478-495.
doi: 10.18307/2022.0210
|
|
[Zhang Fei, Wang Weiwei, Xin Hongyun, et al. Changes of river and lakes water quality in Lake Ebinur Basin, Xinjiang (2005—2020)[J]. Journal of Lake Sciences, 2022, 34(2): 478-495.]
doi: 10.18307/2022.0210
|
[20] |
丁启振, 雷米, 周金龙, 等. 博尔塔拉河上游河谷地区水化学特征及水质评价[J]. 干旱区研究, 2022, 39(3): 829-840.
|
|
[Ding Qizhen, Lei Mi, Zhou Jinlong, et al. An assessment of groundwater, surface water, and hydrochemical characteristics in the upper valley of the Bortala River[J]. Arid Zone Research, 2022, 39(3): 829-840.]
|
[21] |
刘世薇, 周华荣, 梁雪琼, 等. 艾比湖流域降水与径流变化特征分析[J]. 水土保持学报, 2011, 25(5): 21-25.
|
|
[Liu Shiwei, Zhou Huarong, Liang Xueqiong, et al. Trend analysis of the precipitation and runoff in Ebinur Lake Basin[J]. Journal of Soil and Water Conservation, 2011, 25(5): 21-25.]
|
[22] |
郝帅, 李发东, 李艳红, 等. 艾比湖流域降水、地表水和地下水稳定同位素特征[J]. 干旱区地理, 2021, 44(4): 934-942.
|
|
[Hao Shuai, Li Fadong, Li Yanhong, et al. Stable isotopes characteristics of precipitation, surface water and groundwater in Ebinur Lake Basin[J]. Arid Land Geography, 2021, 44(4): 934-942.]
|
[23] |
甘容, 徐孟莎, 左其亭. 伊洛河流域基流分割及其时空变化特征[J]. 资源科学, 2022, 44(9): 1824-1834.
doi: 10.18402/resci.2022.09.07
|
|
[Gan Rong, Xu Mengsha, Zuo Qiting. Baseflow separation and spatiotemporal variation characteristics in the Yiluo River Basin[J]. Resources Science, 2022, 44(9): 1824-1834.]
doi: 10.18402/resci.2022.09.07
|
[24] |
张田田, 陈有超, 李潜, 等. 土地利用变化对丹江流域径流和泥沙时空格局的影响[J]. 长江流域资源与环境, 2022, 31(8): 1797-1811.
|
|
[Zhang Tiantian, Chen Youchao, Li Qian, et al. Effects of land-use change on the spatio-temporal patterns of runoff and sediment in the Danjiang River Basin[J]. Resources and Environment in the Yangtze Basin, 2022, 31(8): 1797-1811.]
|
[25] |
侯玥, 徐成东, 刘伟, 等. 气候变化情景下淮河上游流域氮排放预测研究[J]. 地球信息科学学报, 2022, 24(8): 1558-1574.
doi: 10.12082/dqxxkx.2022.210546
|
|
[Hou Yue, Xu Chengdong, Liu Wei, et al. Prediction of nitrogen emission in the upper reaches of the Huai River Basin under climate change scenarios[J]. Journal of Geo-information Science, 2022, 24(8): 1558-1574.]
doi: 10.12082/dqxxkx.2022.210546
|
[26] |
孙瑞, 张雪芹. 基于SWAT模型的流域径流模拟研究进展[J]. 水文, 2010, 30(3): 28-32, 47.
|
|
[Sun Rui, Zhang Xueqin. Progress in application of watershed runoff simulation based on SWAT[J]. Journal of China Hydrology, 2010, 30(3): 28-32, 47.]
|
[27] |
魏潇娜, 龙爱华, 尹振良, 等. 和田河流域冰川径流对气候变化响应的模拟分析[J]. 水资源保, 2022, 38(4): 137-144.
|
|
[Wei Xiaona, Long Aihua, Yin Zhenliang, et al. Simulation of response of glacier runoff to climate change in the Hotan River Basin[J]. Water Resources Protection, 2022, 38(4): 137-144.]
|
[28] |
Liu J, Long A H, Deng X Y, et al. The impact of climate change on hydrological processes of the glacierized watershed and projections[J]. Remote Sensing, 2022, 14(6): 1314, doi: 10.3390/rs14061314.
|
[29] |
Moriasi D N, Arnold J G, Liew M, et al. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations[J]. Transactions of the ASABE, 2007, 50(3): 855-900.
|
[30] |
Mehrotra R, Sharma A. A robust alternative for correcting systematic biases in multi-variable climate model simulations[J]. Environmental Modelling and Software, 139, 105019, doi:10.1016/j.envsoft.2021.105019.
|
[31] |
吴佳, 周波涛, 徐影. 中国平均降水和极端降水对气候变暖的响应: CMIP5模式模拟评估和预估[J]. 地球物理学报, 2015, 58(9): 3048-3060.
|
|
[Wu Jia, Zhou Botao, Xu Ying. Response of precipitation and its extremes over China to warming: CMIP5 simulation and projection[J]. Chinese Journal of Geophysics, 2015, 58(9): 3048-3060.]
|
[32] |
马占云, 任佳雪, 陈海涛, 等. IPCC第一工作组评估报告分析及建议[J]. 环境科学研究, 2022, 35(11): 2550-2558.
|
|
[Ma Zhanyun, Ren Jiaxue, Chen Haitao, et al. Analysis and recommendations of IPCC working group I assessment report[J]. Research of Environmental Sciences, 2022, 35(11): 2550-2558.]
|
[33] |
Zhang Q, Yang J H, Wang W, et al. Climatic warming and humidification in the arid region of northwest China: Multi-scale characteristics and impacts on ecological vegetation[J]. Journal of Meteorological Research, 2021, 35(1): 113-127.
doi: 10.1007/s13351-021-0105-3
|
[34] |
迪丽努尔·阿吉, 近藤昭彦, 肖開提·阿吉, 等. 博河流域气候变化及其与径流量的关系研究[J]. 资源科学, 2014, 36(10): 2123-2130.
|
|
[Aji Dilinuer, Akihiko Kondoh, Aji Xiaokaiti, et al. Climatic change in the Bortala River Basin and runoff volume[J]. Resources Science, 2014, 36(10): 2123-2130.]
|
[35] |
Kraaijenbrink P D A, Bierkens M F P, Lutz A F, et al. Impact of a global temperature rise of 1.5 degrees Celsius on Asia’s glaciers[J]. Nature, 2017, 549(7671): 257-260.
doi: 10.1038/nature23878
|
[36] |
曾庆江. 博尔塔拉谷地对径流的调节作用[J]. 干旱区地理, 1994, 17(4): 9-14.
|
|
[Zeng Qingjiang. Regulation of Bortala valley on runoff[J]. Arid Land Geography, 1994, 17(4): 9-14.]
|
[37] |
赵求东, 赵传成, 秦艳, 等. 天山南坡高冰川覆盖率的木扎提河流域水文过程对气候变化的响应[J]. 冰川冻土, 2020, 42(4): 1285-1298.
doi: 10.7522/j.issn.1000-0240.2020.0016
|
|
[Zhao Qiudong, Zhao Chuancheng, Qin Yan, et al. Response of the hydrological processes to climate change in the Muzati River Basin with high glacierization, southern slope of the Tianshan Mountains[J]. Journal of Glaciology and Geocryology, 2020, 42(4): 1285-1298.]
doi: 10.7522/j.issn.1000-0240.2020.0016
|