[1] |
夏军, 左其亭. 国际水文科学研究的新进展[J]. 地球科学进展, 2006, 21(3): 256-261.
doi: 10.11867/j.issn.1001-8166.2006.03.0256
|
|
[Xia Jun, Zuo Qiting. Advances in international hydrological science research[J]. Advances in Earth Science, 2006, 21(3): 256-261.]
|
[2] |
金倩芳. 无资料地区短期水文预报方法研究与应用[D]. 武汉: 华中科技大学, 2020.
|
|
[Jin Qianfang. Research and application on the short-term hydrological forecasting methods in the ungauged basins[D]. Wuhan: Huazhong University of Science & Technology, 2020.]
|
[3] |
Santra M S, Santra A, Kumar A. Catchment specific evaluation of Aphrodite’s and TRMM derived gridded precipitation data products for predicting runoff in a semi gauged watershed of tropical India[J]. Geocarto International, 2021, 36(11): 1292-1308.
|
[4] |
Himanshu S K, Pandey A, Patil A. Hydrologic evaluation of the TMPA-3B42V7 precipitation data set over an agricultural watershed using the SWAT model[J]. Journal of Hydrologic Engineering, 2018, 23(4): doi: 10.1061/(ASCE)HE.1943-5584.0001629.
|
[5] |
Zhang Y, Hanati G, Danierhan S, et al. Application and assessment of a downscaled GPM dataset in the simulation of snowmelt runoff in alpine mountainous areas[J]. Journal of Hydrology: Regional Studies, 2022, 41: 101107, doi: 10.1016/j.ejrh.2022.101107.
|
[6] |
Behrangi A, Khakbaz B, Jaw T C, et al. Hydrologic evaluation of satellite precipitation products over a mid-size basin[J]. Journal of Hydrology, 2011, 397(3-4): 225-237.
|
[7] |
蒋慧敏, 刘春云, 贾健, 等. 新疆夏季对流性降水时空分布特征及成因分析[J]. 高原气象, 2019, 38(2): 340-348.
doi: 10.7522/j.issn.1000-0534.2018.00087
|
|
[Jiang Huimin, Liu Chunyun, Jia jian, et al. The temporal and spatial characteristics of convective precipitation in Xinjiang among the summer and causes analysis[J]. Plateau Meteorology, 2019, 38(2): 340-348.]
doi: 10.7522/j.issn.1000-0534.2018.00087
|
[8] |
牛怡莹, 李春兰, 王军, 等. 内蒙古ERA5再分析降水数据性能评估与极端降水时空特征分析[J]. 干旱区地理, 2023, 46(9): 1418-1431.
|
|
[Niu Yiying, Li Chunlan, Wang Jun, et al. Performance evaluation of ERA5 reanalysis precipitation data and spatiotemporal characteristics of extreme precipitation in Inner Mongolia[J]. Arid Land Geography, 2023, 46(9): 1418-1431.]
|
[9] |
成硕, 李艳忠, 星寅聪, 等. 遥感降水产品对黄河源区水文干旱特征的模拟性能分析[J]. 干旱区地理, 2023, 46(7): 1063-1072.
|
|
[Cheng Shuo, Li Yanzhong, Xing Yincong, et al. Simulation performance of remote sensing precipitation products on hydrological drought characteristics in the source region of the Yellow River[J]. Arid Land Geography, 2023, 46(7): 1063-1072.]
|
[10] |
Hou C Z, Huang D Q, Xu H, et al. Evaluation of ERA5 reanalysis over the deserts in northern China[J]. Theoretical and Applied Climatology, 2022, 151(1-2): 801-816.
|
[11] |
谭秋阳, 徐宗学, 赵彦军, 等. CMFD数据集在雅江年楚河流域的适用性分析[J]. 北京师范大学学报(自然科学版), 2021, 57(3): 372-379.
|
|
[Tan Qiuyang, Xu Zongxue, Zhao Yanjun, et al. Applicability of China meteorological forcing dataset to the Nianchu River Basin[J]. Journal of Beijing Normal University (Natural Science Edition), 2021, 57(3): 372-379.]
|
[12] |
黄艳伟, 李颖, 朱红雷, 等. CFSR数据集在辉发河流域水文模拟中的应用[J]. 水土保持研究, 2021, 28(1): 300-306.
|
|
[Huang Yanwei, Li Ying, Zhu Honglei, et al. Application of CFSR dataset to hydrological simulation of Huifa River Basin[J]. Research of Soil and Water Conservation, 2021, 28(1): 300-306.]
|
[13] |
张淑芬, 董燕灵, 徐精诚, 等. 基于目标扰动的AdaBoost算法[J]. 通信学报, 2023, 44(2): 198-209.
doi: 10.11959/j.issn.1000-436x.2023028
|
|
[Zhang Shufen, Dong Yanling, Xu Jingcheng, et al. AdaBoost algorithm based on target perturbation[J]. Journal on Communications, 2023, 44(2): 198-209.]
doi: 10.11959/j.issn.1000-436x.2023028
|
[14] |
Tyralis H, Papacharalampous G. Boosting algorithms in energy research: A systematic review[J]. Neural Computing and Applications, 2021, 33(21): 1-17.
|
[15] |
张圆圆, 侯艳, 李康. 多分类研究中的boosting算法[J]. 中国卫生统计, 2018, 35(1): 142-145.
|
|
[Zhang Yuanyuan, Hou Yan, Li Kang. Boosting algorithm in multi-classification research[J]. Chinese Journal of Health Statistics, 2018, 35(1): 142-145.]
|
[16] |
孟宪贵, 郭俊建, 韩永清. ERA5再分析数据适用性初步评估[J]. 海洋气象学报, 2018, 38(1): 91-99.
|
|
[Meng Xiangui, Guo Junjian, Han Yongqing. Preliminarily assessment of ERA5 reanalysis data[J]. Journal of Marine Meteorology, 2018, 38(1): 91-99.]
|
[17] |
Zhao B, Zhang B, Shi C, et al. Comparison of the global energy cycle between Chinese reanalysis interim and ECMWF reanalysis[J]. Journal of Meteorological Research, 2019, 33(3): 563-575.
doi: 10.1007/s13351-019-8129-7
|
[18] |
Kang M, Chun H, Song B. Contributions of convective and orographic gravity waves to the Brewer-Bobson circulation estimated from NCEP CFSR[J]. Journal of the Atmospheric Sciences, 2020, 77(3): 981-1000.
|
[19] |
刘自牧, 李国平. 高原切变线的客观识别与时空分布的统计分析[J]. 大气科学, 2019, 43(1): 13-26.
|
|
[Liu Zimu, Li Guoping. Objective identification of the Tibetan Plateau shear line and statistical analysis of its spatiotemporal evolution features[J]. Chinese Journal of Atmospheric Sciences, 2019, 43(1): 13-26.]
|
[20] |
温婷婷, 郭英香, 董少睿, 等. 1979—2017年CRU、ERA5、CMFD格点降水数据在青藏高原适用性评估[J]. 干旱区研究, 2022, 39(3): 684-697.
|
|
[Wen Tingting, Guo Yingxiang, Dong Shaorui, et al. Assessment of CRU, ERA5, CMFD grid precipitation data for the Tibetan Plateau from 1979 to 2017[J]. Arid Zone Research, 2022, 39(3): 684-697.]
|
[21] |
张银辉. SWAT模型及其应用研究进展[J]. 地理科学进展, 2005, 24(5): 123-132.
|
|
[Zhang Yinhui. Development of study on model-SWAT and its application[J]. Progress in Geography, 2005, 24(5): 123-132.]
|
[22] |
Fan J Z, Fan Z Y. A time series regression model via improved PCA and bagging algorithms[J]. Academic Journal of Engineering and Technology Science, 2023, 6(5): 23-29.
|
[23] |
尹儒, 门昌骞, 王文剑, 等. 模型决策树: 一种决策树加速算法[J]. 模式识别与人工智能, 2018, 31(7): 643-652.
doi: 10.16451/j.cnki.issn1003-6059.201807007
|
|
[Yin Ru, Men Changqian, Wang Wenjian, et al. Model decision tree: An accelerated algorithm of decision tree[J]. Pattern Recognition and Artificial Intelligence, 2018, 31(7): 643-652.]
doi: 10.16451/j.cnki.issn1003-6059.201807007
|
[24] |
唐豪, 王晓云, 陈伏龙, 等. 基于ERA5-Land数据集的玛纳斯河径流模拟研究[J]. 地学前缘, 2022, 29(3): 271-283.
doi: 10.13745/j.esf.sf.2022.1.50
|
|
[Tang Hao, Wang Xiaoyun, Chen Fulong, et al. Simulation of Manas River runoff based on ERA5-Land dataset[J]. Earth Science Frontiers, 2022, 29(3): 271-283.]
doi: 10.13745/j.esf.sf.2022.1.50
|
[25] |
谷新晨, 肖森元, 杨广, 等. 基于CMADS和SWAT模型的玛纳斯河流域水文过程模拟[J]. 水资源与水工程学报, 2021, 32(2): 116-123.
|
|
[Gu Xinchen, Xiao Senyuan, Yang Guang, et al. Hydrological process simulation of Manas River Basin based on CMADS and SWAT model[J]. Journal of Water Resources & Water Engineering, 2021, 32(2): 116-123.]
|
[26] |
陈伏龙, 王怡璇, 吴泽斌, 等. 气候变化和人类活动对干旱区内陆河径流量的影响——以新疆玛纳斯河流域肯斯瓦特水文站为例[J]. 干旱区研究, 2015, 32(4): 692-697.
|
|
[Chen Fulong, Wang Yixuan, Wu Zebin, et al. Impacts of climate change and human activities on runoff of continental river in arid areas: Taking Kensiwate hydrological station in Xinjiang Manas River Basin as an example[J]. Arid Zone Research, 2015, 32(4): 692-697.]
|
[27] |
肖森元, 杨广, 何新林, 等. 玛纳斯河流域MIKE SHE水文模型率定[J]. 山地学报, 2021, 39(1): 1-9.
|
|
[Xiao Senyuan, Yang Guang, He Xinlin, et al. Calibration of hydrological modelling by MIKE SHE for the Manas River Basin, Xinjiang, China[J]. Mountain Research, 2021, 39(1): 1-9.]
|