[1] |
Abd El-Mageed T A, Semida W M, Rady M M. Moringa leaf extract as biostimulant improves water use efficiency, physio-biochemical attributes of squash plants under deficit irrigation[J]. Agricultural Water Management, 2017, 193: 46-54.
doi: 10.1016/j.agwat.2017.08.004
|
[2] |
郝海超, 郝兴明, 花顶, 等. 2000—2018年中亚五国水分利用效率对气候变化的响应[J]. 干旱区地理, 2021, 44(1): 1-14.
|
|
[Hao Haichao, Hao Xingming, Hua Ding, et al. Response of water use efficiency to climate change in five Central Asian countries from2000 to 2018[J]. Arid Land Geography, 2021, 44(1): 1-14.]
|
[3] |
Jin N, Ren W, Tao B, et al. Effects of water stress on water use efficiency of irrigated and rainfed wheat in the Loess Plateau, China[J]. Science of the Total Environment, 2018, 642: 1-11.
doi: 10.1016/j.scitotenv.2018.06.028
|
[4] |
张桂玲, 李艳琴, 罗绪强, 等. 季节性干旱下喀斯特次生林不同树种水分利用效率变化[J]. 地球与环境, 2021, 49(1): 25-31.
|
|
[Zhang Guiling, Li Yanqin, Luo Xuqiang, et al. Change of water use efficiency of different species in karst secondary forest under seasonal drought[J]. Earth and Environment, 2021, 49(1): 25-31.]
|
[5] |
Lu X L, Zhuang Q L. Evaluating evapotranspiration and water-use efficiency of terrestrial ecosystems in the conterminous United States using MODIS and AmeriFlux data[J]. Remote Sensing of Environment, 2010, 114(9): 1924-1939.
doi: 10.1016/j.rse.2010.04.001
|
[6] |
Zhao M S, Heinsch F A, Nemani R R, et al. Improvements of the MODIS terrestrial gross and net primary production global data set[J]. Remote Sensing of Environment, 2005, 95(2): 164-176.
doi: 10.1016/j.rse.2004.12.011
|
[7] |
Mu Q Z, Zhao M S, Running S W. Improvements to a MODIS global terrestrial evapotranspiration algorithm[J]. Remote Sensing of Environment, 2011, 115(8): 1781-1800.
doi: 10.1016/j.rse.2011.02.019
|
[8] |
van Soest H L, den Elzen M G, van Vuuren D P. Net-zero emission targets for major emitting countries consistent with the Paris Agreement[J]. Nature Communications, 2021, 12: 2140, doi: 10.1038/s41467-021-22294-x.
doi: 10.1038/s41467-021-22294-x
pmid: 33837206
|
[9] |
Cheng L, Zhang L, Wang Y P, et al. Recent increases in terrestrial carbon uptake at little cost to the water cycle[J]. Nature Communications, 2017, 8: 110, doi: 10.1038/s41467-017-00114-5.
doi: 10.1038/s41467-017-00114-5
pmid: 28740122
|
[10] |
Huang Y L, Chen L D, Fu B J, et al. The wheat yields and water-use efficiency in the Loess Plateau: Straw mulch and irrigation effects[J]. Agricultural Water Management, 2005, 72(3): 209-222.
doi: 10.1016/j.agwat.2004.09.012
|
[11] |
Hao H C, Li Z, Chen Y N, et al. Recent variations in soil moisture use efficiency (SMUE) and its influence factors in Asian drylands[J]. Journal of Cleaner Production, 2022, 373: 133860, doi: 10.1016/j.jclepro.2022.133860.
doi: 10.1016/j.jclepro.2022.133860
|
[12] |
刘伟, 姜逢清, 李小兰. 新疆气候变化的适应能力时空演化特征[J]. 干旱区研究, 2017, 34(3): 531-540.
|
|
[Liu Wei, Jiang Fengqing, Li Xiaolan. Spatiotemporal evolution of adaptive capacity to climate change in Xinjiang[J]. Arid Zone Research, 2017, 34(3): 531-540.]
|
[13] |
Williams J D, Long D S, Reardon C L. Productivity and water use efficiency of intensified dryland cropping systems under low precipitation in Pacific Northwest, USA[J]. Field Crops Research, 2020, 254: 107787, doi: 10.1016/j.fcr.2020.107787.
doi: 10.1016/j.fcr.2020.107787
|
[14] |
Gianluigi O, Matteo M. Precipitation seasonality promotes acquisitive and variable leaf water-economics traits in southwest Australian granite outcrop species[J]. Biological Journal of the Linnean Society, 2020, 133: 411-417.
doi: 10.1093/biolinnean/blaa053
|
[15] |
裴婷婷, 李小雁, 吴华武, 等. 黄土高原植被水分利用效率对气候和植被指数的敏感性研究[J]. 农业工程学报, 2019, 35(5): 119-125.
|
|
[Pei Tingting, Li Xiaoyan, Wu Huawu, et al. Sensitivity of vegetation water use efficiency to climate and vegetation index in Loess Plateau, China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(5): 119-125.]
|
[16] |
崔茜琳, 何云玲, 李宗善. 青藏高原植被水分利用效率时空变化及与气候因子的关系[J]. 应用生态学报, 2022, 33(6): 1525-1532.
doi: 10.13287/j.1001-9332.202206.024
|
|
[Cui Xilin, He Yunling, Li Zongshan. Spatial-temporal variation of vegetation water use efficiency and its relationship with climate factors over the Qinghai-Tibet Plateau, China[J]. Chinese Journal of Applied Ecology, 2022, 33(6): 1525-1532.]
doi: 10.13287/j.1001-9332.202206.024
|
[17] |
陈亚宁, 李稚, 方功焕, 等. 气候变化对中亚天山山区水资源影响研究[J]. 地理学报, 2017, 72(1): 18-26.
doi: 10.11821/dlxb201701002
|
|
[Chen Yaning, Li Zhi, Fang Gonghuan, et al. Impact of climate change on water resources in the Tianshan Mountains, Central Asia[J]. Acta Geographica Sinica, 2017, 72(1): 18-26.]
doi: 10.11821/dlxb201701002
|
[18] |
Zou J, Ding J L, Welp M, et al. Assessing the response of ecosystem water use efficiency to drought during and after drought events across Central Asia[J]. Sensors, 2020, 20(3): 581, doi: 10.3390/s20030581.
doi: 10.3390/s20030581
|
[19] |
Gilbert M E, Hernandez M I. How should crop water-use efficiency be analyzed? A warning about spurious correlations[J]. Field Crops Research, 2019, 235: 59-67.
doi: 10.1016/j.fcr.2019.02.017
|
[20] |
Liu S, Luo G P, Wang H. Temporal and spatial changes in crop water use efficiency in Central Asia from 1960 to 2016[J]. Sustainability, 2020, 12(2): 572, doi: 10.3390/su12020572.
doi: 10.3390/su12020572
|
[21] |
Abd El-Mageed T A, Semida W M, Rady M M. Moringa leaf extract as biostimulant improves water use efficiency, physio-biochemical attributes of squash plants under deficit irrigation[J]. Agricultural Water Management, 2017, 193: 46-54.
doi: 10.1016/j.agwat.2017.08.004
|
[22] |
刘海桂, 唐旭利, 周国逸, 等. 1981—2000年广东省净初级生产力的时空格局[J]. 生态学报, 2007, 27(10): 4065-4074.
|
|
[Liu Haigui, Tang Xuli, Zhou Guoyi, et al. Spatial and temporal patterns of net primary productivity in the duration of 1981—2000 in Guangdong, China[J]. Acta Ecologica Sinica, 2007, 27(10): 4065-4074.]
|
[23] |
原一荃, 薛力铭, 李秀珍. 基于CASA模型的长江口崇明东滩湿地植被净初级生产力与固碳潜力[J]. 生态学杂志, 2022, 41(2): 334-342.
|
|
[Yuan Yiquan, Xue Liming, Li Xiuzhen. Net primary productivity and carbon sequestration potential of salt marsh vegetation in Chongming Dongtan of the Yangtze Estuary based on CASA model[J]. Chinese Journal of Ecology, 2022, 41(2): 334-342.]
|
[24] |
Adams M A, Turnbull T L, Sprent J I, et al. Legumes are different: Leaf nitrogen, photosynthesis, and water use efficiency[J]. Proc Natl Acad Sci U S A, 2016, 113(15): 4098-4103.
doi: 10.1073/pnas.1523936113
|
[25] |
Yang J, Huang X. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019[J]. Earth System Science Data, 2021, 13(8): 3907-3925.
doi: 10.5194/essd-13-3907-2021
|
[26] |
李稚, 李玉朋, 李鸿威, 等. 中亚地区干旱变化及其影响分析[J]. 地球科学进展, 2022, 37(1): 37-50.
doi: 10.11867/j.issn.1001-8166.2021.124
|
|
[Li Zhi, Li Yupeng, Li Hongwei, et al. Analysis of drought change and its impact in Central Asia[J]. Advances in Earth Science, 2022, 37(1): 37-50.]
doi: 10.11867/j.issn.1001-8166.2021.124
|
[27] |
Yang J L, Dong J W, Xiao X M, et al. Divergent shifts in peak photosynthesis timing of temperate and alpine grasslands in China[J]. Remote Sensing of Environment, 2019, 233: 111395, doi: 10.1016/j.rse.2019.111395.
doi: 10.1016/j.rse.2019.111395
|
[28] |
Liu X F, Feng X M, Fu B J. Changes in global terrestrial ecosystem water use efficiency are closely related to soil moisture[J]. Science of the Total Environment, 2020, 698: 134165, doi: 10.1016/j.scitotenv.2019.134165.
doi: 10.1016/j.scitotenv.2019.134165
|
[29] |
Kondratyev K Y, Varotsos C. Atmospheric greenhouse effect in the context of global climate change[J]. Il Nuovo Cimento C, 1995, 18(2): 123-151.
doi: 10.1007/BF02512015
|