Arid Land Geography ›› 2024, Vol. 47 ›› Issue (4): 539-548.doi: 10.12118/j.issn.1000-6060.2023.194
• Climate Change and Surface Process • Previous Articles Next Articles
LI Heng(), ZHU Bingbing(), BIAN He, WANG Rong, TANG Xinyi
Received:
2023-04-28
Revised:
2023-07-06
Online:
2024-04-25
Published:
2024-05-17
Contact:
ZHU Bingbing
E-mail:20212260@snnu.edu.cn;zbb1026@126.com
LI Heng, ZHU Bingbing, BIAN He, WANG Rong, TANG Xinyi. Temporal and spatial changes in extreme precipitation and its driving factors in the water-wind erosion crisscross region of the Loess Plateau from 1970 to 2020[J].Arid Land Geography, 2024, 47(4): 539-548.
Tab. 1
Definition and classification of extreme climate indices"
类型 | 指数名称 | 指数代码 | 定义 | 单位 |
---|---|---|---|---|
持续指数 | 持续湿润日数 | CWD | 日降水量≥1 mm的最长连续日数 | d |
持续干燥日数 | CDD | 日降水量<1 mm的最长连续日数 | d | |
湿日总降水量 | PRCPTOT | 年全部雨(雪)日降水量之和 | mm | |
绝对指数 | 中雨日数 | R10 | 每年日降水量≥10 mm的总日数 | d |
大雨日数 | R20 | 每年日降水量≥20 mm的总日数 | d | |
暴雨日数 | R25 | 每年日降水量≥25 mm的总日数 | d | |
相对指数 | 强降水量 | R95P | 每年日降水量>95%分位值的降水量之和 | mm |
极强降水量 | R99P | 每年日降水量>99%分位值的降水量之和 | mm | |
强度指数 | 1日最大降水量 | R1d | 年内1日最大降水量 | mm |
5日最大降水量 | R5d | 年内5日最大降水量 | mm | |
降水强度 | SDII | 年内日降水量≥1 mm的总量与总日数的比值 | mm·d-1 |
Tab. 2
Phase relationship of extreme precipitation index in the water-wind erosion crisscross region from 1970 to 2020"
参数 | Pre | CDD | CWD | PRCPTOT | R10 | R20 | R25 | R95P | R99P | R1d | R5d |
---|---|---|---|---|---|---|---|---|---|---|---|
CDD | -0.24 | ||||||||||
CWD | 0.54** | -0.16 | |||||||||
PRCPTOT | 0.99** | -0.24 | 0.54** | ||||||||
R10 | 0.96** | -0.20 | 0.60** | 0.96** | |||||||
R20 | 0.88** | -0.12 | 0.39** | 0.89** | 0.86** | ||||||
R25 | 0.83** | -0.08 | 0.36** | 0.84** | 0.79** | 0.96** | |||||
R95P | 0.78** | -0.01 | 0.29* | 0.78** | 0.76** | 0.88** | 0.89** | ||||
R99P | 0.69** | -0.01 | 0.25 | 0.70** | 0.64** | 0.73** | 0.77** | 0.90** | |||
R1d | 0.68** | -0.07 | 0.09 | 0.69** | 0.57** | 0.69** | 0.73** | 0.70** | 0.79** | ||
R5d | 0.79** | -0.08 | 0.42** | 0.80** | 0.74** | 0.81** | 0.82** | 0.76** | 0.78** | 0.84** | |
SDII | 0.77** | 0.01 | 0.29* | 0.77** | 0.76** | 0.89** | 0.91** | 0.82** | 0.75** | 0.77** | 0.85** |
[1] | Legg S. IPCC, 2021: Climate change 2021-the physical science basis[J]. Interaction, 2021, 49(4): 44-45. |
[2] | Brown P J, Bradley R S, Keimig F T. Changes in extreme climate indices for the northeastern United States, 1870—2005[J]. Journal of Climate, 2010, 23(24): 6555-6572. |
[3] | New M, Hewitson B, Stephenson D B, et al. Evidence of trends in daily climate extremes over southern and west Africa[J]. Journal of Geophysical Research: Atmospheres, 2006, 111(D14): D14102, doi: 10.1029/2005JD006289. |
[4] | Regoto P, Dereczynski C, Chou S C, et al. Observed changes in air temperature and precipitation extremes over Brazil[J]. International Journal of Climatology, 2021, 41(11): 5125-5142. |
[5] | 史文茹, 李昕, 曾明剑, 等. “7·20”郑州特大暴雨的多模式对比及高分辨率区域模式预报分析[J]. 大气科学学报, 2021, 44(5): 688-702. |
[Shi Wenru, Li Xin, Zeng Mingjian, et al. Multi-model comparison and high-resolution regional model forecast analysis for the “7·20” Zhengzhou severe heavy rain[J]. Transactions of Atmospheric Sciences, 2021, 44(5): 688-702. ] | |
[6] | Meehl G A, Tebaldi C. More intense, more frequent, and longer lasting heat waves in the 21st century[J]. Science, 2004, 305(5686): 994-997. |
[7] | Perkins S, Alexander L, Nairn J. Increasing frequency, intensity and duration of observed global heatwaves and warm spells[J]. Geophysical Research Letters, 2012, 39(20): 20714, doi: 10.1029/2012GL053361. |
[8] | Li G K, Moon S. Topographic stress control on bedrock landslide size[J]. Nature Geoscience, 2021, 14(5): 307-313. |
[9] |
李双双, 孔锋, 韩鹭, 等. 陕北黄土高原区极端降水时空变化特征及其影响因素[J]. 地理研究, 2020, 39(1): 140-151.
doi: 10.11821/dlyj020181067 |
[Li Shuangshuang, Kong Feng, Han Lu, et al. Spatiotemporal variability of extreme precipitation and influencing factors on the Loess Plateau in northern Shaanxi Province[J]. Geographical Research, 2020, 39(1): 140-151. ]
doi: 10.11821/dlyj020181067 |
|
[10] | 陈效逑, 刘立, 尉杨平. 1961—2005年黄河流域极端气候事件变化趋势[J]. 人民黄河, 2011, 33(5): 3-5. |
[Chen Xiaoshu, Liu Li, Yu Yangping, et al. Variation trend of extreme climate events of the Yellow River Basin in 1961—2005 period[J]. Yellow River, 2011, 33(5): 3-5. ] | |
[11] | 杨维涛, 孙建国, 康永泰, 等. 黄土高原地区极端气候指数时空变化[J]. 干旱区地理, 2020, 43(6): 1456-1466. |
[Yang Weitao, Sun Jianguo, Kang Yongtai, et al. Temporal and spatial changes of extreme weather indices in the Loess Plateau[J]. Arid Land Geography, 2020, 43(6): 1456-1466. ] | |
[12] | 孙艳萍. 黄土高原水蚀风蚀交错带植被覆盖动态变化及其与气候因子的关系[D]. 杨凌: 西北农林科技大学, 2012. |
[Sun Yanping. Dynamic changes of vegetation cover and the relationship with climatic factors of the water-wind erosion crisscross region in the Loess Plateau[D]. Yangling: Northwest A & F University, 2012. ] | |
[13] | 卓静, 胡皓, 何慧娟, 等. 陕北黄土高原生态脆弱性时空变异及驱动因素分析[J]. 干旱区地理, 2023, 46(11): 1768-1777. |
[Zhuo Jing, Hu Hao, He Huijuan, et al. Spatiotemporal variation and driving factors of ecological vulnerability in the Loess Plateau of northern Shaanxi[J]. Arid Land Geography, 2023, 46(11): 1768-1777. ] | |
[14] | 殷敏峰, 邸明婷, 邓鑫欣, 等. 黄土高原水蚀风蚀交错带迎风坡水蚀影响的风蚀特征[J]. 中国水土保持科学, 2022, 20(5): 39-46. |
[Yin Minfeng, Di Mingting, Deng Xinxin, et al. Wind erosion characteristics on windward slopes affected by water erosion in wind-water erosion crisscross region of the Loess Plateau[J]. Science of Soil and Water Conservation, 2022, 20(5): 39-46. ] | |
[15] | 李秋艳, 蔡强国, 方海燕. 风水复合侵蚀与生态恢复研究进展[J]. 地理科学进展, 2010, 29(1): 165-172. |
[Li Qiuyan, Cai Qiangguo, Fang Haiyan. Advances in complex erosion of wind and water and ecological restoration[J]. Progress in Geography, 2010, 29(1): 165-172. ] | |
[16] | 王金花. 风蚀水蚀交错区流域植被覆被变化对水沙过程的作用机理研究[D]. 西安: 西安理工大学, 2017. |
[Wang Jinhua. Impact of vegetation cover change on water and sediment procession in wind-water erosion crisscross region[D]. Xi’an: Xi’an University of Technology, 2017. ] | |
[17] | 孙艳萍, 张晓萍, 刘建祥, 等. 黄土高原水蚀风蚀交错带植被覆盖度动态变化[J]. 干旱区研究, 2013, 30(6): 1036-1043. |
[Sun Yanping, Zhang Xiaoping, Liu Jianxiang, et al. Dynamic change of vegetation coverage in water-wind erosion ecotone in the Loess Plateau[J]. Arid Zone Research, 2013, 30(6): 1036-1043. ] | |
[18] | 唐克丽, 侯庆春, 王斌科, 等. 黄土高原水蚀风蚀交错带和神木试区的环境背景及整治方向[J]. 水土保持研究, 1993(2): 2-15. |
[Tang Keli, Hou Qingchun, Wang Binke, et al. The environment background and administration way of wind-water erosion crisscross region and Shenmu experimental area on the Loess Plateau[J]. Research of Soil and Water Conservation, 1993(2): 2-15. ] | |
[19] | 杨灿, 魏天兴, 李亦然, 等. 黄土高原水蚀风蚀交错区退耕还林工程前后NDVI时空变化特征[J]. 北京林业大学学报, 2021, 43(6): 83-91. |
[Yang Can, Wei Tianxing, Li Yiran, et al. Spatiotemporal variations of NDVI before and after implementation of grain for green project in wind-water erosion crisscross region of the Loess Plateau[J]. Journal of Beijing Forestry University, 2021, 43(6): 83-91. ] | |
[20] | 赵国永, 韩艳, 刘明华, 等. 1961—2013年河南省极端降水事件时空变化特征[J]. 水土保持研究, 2018, 25(6): 115-120. |
[Zhao Guoyong, Han Yan, Liu Minghua, et al. Spatial-temporal variation of extreme precipitation events in Henan Province from 1961 to 2013[J]. Research of Soil and Water Conservation, 2018, 25(6): 115-120. ] | |
[21] | 董林垚, 张平仓, 刘纪根, 等. 太阳黑子和ENSO对日本吉野川流域水文要素影响[J]. 水科学进展, 2017, 28(5): 671-680. |
[Dong Linyao, Zhang Pingcang, Liu Jigen, et al. Combined influence of solar activity and ENSO on hydrological processes in YoShino River Basin, Japan[J]. Advances in Water Science, 2017, 28(5): 671-680. ] | |
[22] | Stocker T F, Qin D, Plattner G K, et al. Climate change 2013:The physical science basis. Contribution of working group I to the Fifth Assessment Report of IPCC the Intergovernmental Panel on Climate Change[M]. Cambridge: Cambridge University Press, 2014: 752-760. |
[23] |
武文博, 游庆龙, 王岱. 基于均一化降水资料的中国极端降水特征分析[J]. 自然资源学报, 2016, 31(6): 1015-1026.
doi: 10.11849/zrzyxb.20150209 |
[Wu Wenbo, You Qinglong, Wang Dai. Characteristics of extreme precipitation in China based on homogenized precipitation data[J]. Journal of Natural Resources, 2016, 31(6): 1015-1026. ]
doi: 10.11849/zrzyxb.20150209 |
|
[24] | 朱飙. 西北地区气候暖湿化背景下水汽、潜在蒸散及极端温度和降水的变化特征[D]. 兰州: 兰州大学, 2022. |
[Zhu Biao. Variation characteristics of vapor, potential evapotranspiration and extreme temperature and precipitation under the background of warming-wetting in northwest China[D]. Lanzhou: Lanzhou University, 2022. ] | |
[25] | 慎璐璐, 杨艳芬, 吴晶, 等. 黄河流域极端气候事件时空变化规律[J]. 水土保持研究, 2022, 29(2): 231-242. |
[Shen Lulu, Yang Yanfen, Wu Jing, et al. Spatial and temporal variation characteristics of extreme climate events in the Yellow River Basin[J]. Research of Soil and Water Conservation, 2022, 29(2): 231-242. ] | |
[26] | Dong X, Zhang S, Zhou J, et al. Magnitude and frequency of temperature and precipitation extremes and the associated atmospheric circulation patterns in the Yellow River Basin (1960—2017), China[J]. Water, 2019, 11(11): 2334, doi:10.3390/w11112334. |
[27] | 任玉玲. 黄土高原极端气候变化及对河流水沙影响的评估与预测[D]. 杨凌: 西北农林科技大学, 2022. |
[Ren Yuling. Evaluation and projection of extreme climate changes and its impacts on river runoff and sediment load on the Loess Plateau[D]. Yangling: Northwest A & F University, 2022. ] | |
[28] | Zhao X, Li Z, Zhu Q, et al. Change of precipitation characteristics in the water-wind erosion crisscross region on the Loess Plateau, China, from 1958 to 2015[J]. Scientific Reports, 2017, 7(1): 8048, doi:10.1038/s41598-017-08600-y. |
[29] | Schär C, Lüti D, Beyrle U, et al. The soil-precipitation feedback: A process study with a regional climate model[J]. Journal of Climate, 1999, 12(3): 722-741. |
[30] | Cai Q F, Liu Y, Fang C X, et al. Insight into spatial-temporal patterns of hydroclimate change on the Chinese Loess Plateau over the past 250 years, using new evidence from tree rings[J]. Science of the Total Environment, 2022, 850: 157960, doi: 10.1016/j.scitotenv.2022.157960. |
[31] | 徐洁, 毕宇珠, 雷秋良, 等. 1961—2020年宁夏地区极端气候变化趋势及影响因素分析[J]. 中国农业资源与区划, 2022, 43(12): 159-171. |
[Xu Jie, Bi Yuzhu, Lei Qiuliang, et al. Analysis of extreme climate change trends and influencing factors from 1961 to 2020 in Ningxia Hui Autonomous Region, China[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2022, 43(12): 159-171. ] | |
[32] |
刘新伟, 王澄海, 郭润霞, 等. 1981—2018年甘肃省极端暴雨天气过程的气候与环流特征[J]. 干旱气象, 2021, 39(5): 750-758.
doi: 10.11755/j.issn.1006-7639(2021)-05-0750 |
[Liu Xinwei, Wang Chenghai, Guo Runxia, et al. Climate and circulation characteristics of extreme rainstorm processes in Gansu from 1981 to 2018[J]. Journal of Arid Meteorology, 2021, 39(5): 750-758. ] | |
[33] | 张菁, 张珂, 王晟, 等. 陕甘宁三河源区1971—2017年极端降水时空变化分析[J]. 河海大学学报(自然科学版), 2021, 49(3): 288-294. |
[Zhang Jing, Zhang Ke, Wang Sheng, et al. Spatiotemporal variation analysis of extreme precipitation in the Three River Source Area of the Shaanxi-Gansu-Ningxia contiguous region from 1971 to 2017[J]. Journal of Hohai University (Natural Sciences Edition), 2021, 49(3): 288-294. ] | |
[34] | 史维良, 车璐阳, 李涛. 陕西省汛期极端降水概率分布及综合危险性评估[J]. 干旱区地理, 2023, 46(9): 1407-1417. |
[Shi Weiliang, Che Luyang, Li Tao. Probability distribution and comprehensive risk assessment of extreme precipitation in flood season in Shaanxi Province[J]. Arid Land Geography, 2023, 46(9): 1407-1417. ] | |
[35] |
赵庆云, 傅朝, 刘新伟, 等. 西北东部暖区大暴雨中尺度系统演变特征[J]. 高原气象, 2017, 36(3): 697-704.
doi: 10.7522/j.issn.1000-0534.2016.00140 |
[Zhao Qingyun, Fu Chao, Liu Xinwei, et al. Characteristics of mesoscale system evolution of torrential rain in warm sector over northwest China[J]. Plateau Meteorology, 2017, 36(3): 697-704. ]
doi: 10.7522/j.issn.1000-0534.2016.00140 |
|
[36] | 贾艳青, 张勃, 张耀宗, 等. 长江三角洲地区极端气温事件变化特征及其与ENSO的关系[J]. 生态学报, 2017, 37(19): 6402-6414. |
[Jia Yanqing, Zhang Bo, Zhang Yaozong, et al. Correlation analysis of variation of extreme temperature events and ENSO in Yangtze River Delta region during 1960—2014[J]. Acta Ecologica Sinica, 2017, 37(19): 6402-6414. ] | |
[37] | 黄建平, 陈文, 温之平, 等. 新中国成立70年以来的中国大气科学研究: 气候与气候变化篇[J]. 中国科学: 地球科学, 2019, 49(10): 1607-1640. |
[Huang Jianping, Chen Wen, Wen Zhiping, et al. Review of Chinese atmospheric science research over the past 70 years: Climate and climate change[J]. Scientia Sinica Terrae, 2019, 49(10): 1607-1640. ] | |
[38] | 陈文. 太阳黑子活动与海平面温度的相关性分析[D]. 上海: 上海师范大学, 2022. |
[Chen Wen. Correlation analysis between sunspot activity and sea surface temperature[D]. Shanghai: Shanghai Normal University, 2022. ] | |
[39] | Zhou T, Wu B, Dong L. Advances in research of ENSO changes and the associated impacts on Asian-Pacific climate[J]. Asia-Pacific Journal of Atmospheric Sciences, 2014, 50: 405-422. |
[40] | Chen F, Chen J, Huang W, et al. Westerlies Asia and monsoonal Asia: Spatiotemporal differences in climate change and possible mechanisms on decadal to sub-orbital timescales[J]. Earth-science Reviews, 2019, 192: 337-354. |
|