Arid Land Geography ›› 2024, Vol. 47 ›› Issue (9): 1482-1495.doi: 10.12118/j.issn.1000-6060.2023.597
• Climatology and Hydrology • Previous Articles Next Articles
ZHANG Shunwei(), ZHOU Zixiang(), XIONG Xuanchen, ZHOU Jie
Received:
2023-10-24
Revised:
2023-12-31
Online:
2024-09-25
Published:
2024-09-24
Contact:
ZHOU Zixiang
E-mail:21210226057@stu.xust.edu.cn;zzxcat@qq.com
ZHANG Shunwei, ZHOU Zixiang, XIONG Xuanchen, ZHOU Jie. Extreme climate characteristics in the Wuding River Basin based on WRF model[J].Arid Land Geography, 2024, 47(9): 1482-1495.
Tab. 4
Parameter settings of WRF"
两层嵌套方案 | 参数设置 | 物理方案 | 方案名称 |
---|---|---|---|
初始边界条件 | FNL Data | 长波辐射方案 | RRTM |
投影坐标系 | Lat-Lon | 短波辐射方案 | Dudhia |
区域中心点 | 38.2°N,109.5°E | 地表参数化方案 | MYJ Monin-Obukhov |
时间步长 | 150 s | 云微物理方案 | CAM 5.1 |
嵌套格点 | d01:30×30;d02:61×66 | 陆面过程方案 | Noah LSM |
空间分辨率 | d01:0.25°;d02:0.05° | 大气边界层方案 | MYJ |
输出的时间步长 | d01:24 h;d02:1 h | 浅积云方案 | Kain-Fritsch |
Tab. 5
Evaluation of WRF model and meteorological elements at each station from 2011 to 2020"
气象要素 | 站点 | RMSE | MAE | r | IA |
---|---|---|---|---|---|
最高气温/℃ | 榆林 | 3.98 | 2.08 | 0.96 | 0.96 |
绥德 | 3.92 | 2.11 | 0.96 | 0.97 | |
横山 | 1.90 | 1.70 | 1.00 | 0.99 | |
靖边 | 1.74 | 1.56 | 1.00 | 0.99 | |
最低气温/℃ | 榆林 | 3.39 | 1.69 | 0.97 | 0.97 |
绥德 | 0.85 | 0.74 | 1.00 | 1.00 | |
横山 | 0.79 | 0.67 | 1.00 | 1.00 | |
靖边 | 1.24 | 1.02 | 1.00 | 1.00 | |
降水量/mm | 榆林 | 0.25 | 0.17 | 1.00 | 0.99 |
绥德 | 0.53 | 0.31 | 0.93 | 0.97 | |
横山 | 0.13 | 0.09 | 0.99 | 1.00 | |
靖边 | 0.18 | 0.12 | 0.99 | 0.99 |
[1] | Legg S. IPCC, 2021: Climate change 2021: The physical science basis[J]. Interaction, 2021, 49(4): 44-45. |
[2] | 孙颖. 人类活动对气候系统的影响——解读IPCC第六次评估报告第一工作组报告第三章[J]. 大气科学学报, 2021, 44(5): 654-657. |
[Sun Ying. lmpact of humanactivities on climate system: An interpretation of Chapter Ⅲ of WG I report of IPCC AR6[J]. Transactions of Atmospheric Sciences, 2021, 44(5): 654-657.] | |
[3] | Thackeray C W, Deangelis A M, Hall A, et al. On the connection between global hydrologic sensitivity and regional wet extremes[J]. Geophysical Research Letters, 2018, 45(20): 11343-11351. |
[4] | Donat M G, Lowry A L, Alexander L V, et al. More extreme precipitation in the world’s dry and wet regions[J]. Nature Climate Change, 2016, 6(5): 508-513. |
[5] | Pi Y Y, Yu Y, Zhang Y Q, et al. Extreme temperature events during 1960—2017 in the arid region of northwest China: Spatiotemporal dynamics and associated large-scale atmospheric circulation[J]. Sustainability, 2020, 12(3): 1198, doi: 10.3390/su12031198. |
[6] | Wang Y J, Zhou B T, Qin D H, et al. Changes in mean and extreme temperature and precipitation over the arid region of northwestern China: Observation and projection[J]. Advances in Atmospheric Sciences, 2017, 34: 289-305. |
[7] | 曾颖婷, 陆尔. 1961—2010年我国夏季总降水和极端降水的变化[J]. 气候变化研究进展, 2015, 11(2): 79-85. |
[Zeng Yingting, Lu Er. Changes of summer rainfall and extreme precipitation during 1961—2010 in China[J]. Climate Change Research, 2015, 11(2): 79-85.] | |
[8] | 陈效逑, 刘立, 尉杨平. 1961—2005年黄河流域极端气候事件变化趋势[J]. 人民黄河, 2011, 33(5): 3-5. |
[Chen Xiaoqiu, Liu Li, Wei Yangping. Variation trend of extreme climate events of the Yellow River Basin in 1961—2005 period[J]. Yellow River, 2011, 33(5): 3-5.] | |
[9] | 任宗萍, 马勇勇, 王友胜, 等. 无定河流域不同地貌区径流变化归因分析[J]. 生态学报, 2019, 39(12): 4309-4318. |
[Ren Zongping, Ma Yongyong, Wang Yousheng, et al. Runoff changes and attribution analysis in tributaries of different geomorphic regions in Wuding River Basin[J]. Acta Ecologica Sinica, 2019, 39(12): 4309-4318.] | |
[10] | 党维勤, 郝鲁东, 高健健, 等. 基于“7·26”暴雨洪水灾害的淤地坝作用分析与思考[J]. 中国水利, 2019(8): 52-55. |
[Dang Weiqin, Hao Ludong, Gao Jianjian, et al. Roles of silt retention dam in rainstorm flood disaster on July 26[J]. China Water Resources, 2019(8): 52-55.] | |
[11] | Ahmed K, Sachindra D, Shahid S, et al. Multi-model ensemble predictions of precipitation and temperature using machine learning algorithms[J]. Atmospheric Research, 2020, 236: 104806, doi: 10.1016/j.atmosres.2019.104806. |
[12] | Yang T A, Liu J L, Chen Q Y. Assessment of plain river ecosystem function based on improved gray system model and analytic hierarchy process for the Fuyang River, Haihe River Basin, China[J]. Ecological Modelling, 2013, 268: 37-47. |
[13] | Corchado J M, Lees B. A hybrid case-based model for forecasting[J]. Applied Artificial Intelligence, 2001, 15(2): 105-127. |
[14] | 杨梅焕, 王钰尧, 王涛, 等. 西北干旱区极端降水时空变化特征及驱动因素[J]. 西安理工大学学报, 2023, 39(3): 393-403. |
[Yang Meihuan, Wang Yuyao, Wang Tao, et al. Spatiotemporal variation characteristics and driving factors of extreme precipitation in arid region of northwest China[J]. Journal of Xi’an University of Technology, 2023, 39(3): 393-403.] | |
[15] | 李军龙, 张剑, 张丛, 等. 气象要素空间插值方法的比较分析[J]. 草业科学, 2006, 23(8): 6-11. |
[Li Junlong, Zhang Jian, Zhang Cong, et al. Analyze and compare the spatial interpolation methods for climate factor[J]. Pratacultural Science, 2006, 23(8): 6-11.] | |
[16] | 林忠辉, 莫兴国, 李宏轩, 等. 中国陆地区域气象要素的空间插值[J]. 地理学报, 2002, 57(1): 47-56. |
[Lin Zhonghui, Mo Xingguo, Li Hongxuan, et al. Comparison of three spatial interpolation methods for climate variables in China[J]. Acta Geographica Sinica, 2002, 57(1): 47-56.]
doi: 10.11821/xb200201006 |
|
[17] | 郭飞. 基于WRF的城市热岛效应高分辨率评估方法[J]. 土木建筑与环境工程, 2017, 39(1): 13-19. |
[Guo Fei. Assessment method of urban heat island high resolution based on WRF[J]. Journal of Civil and Environmental Engineering, 2017, 39(1): 13-19.] | |
[18] | 侯嘉琪. 基于WRF模式的中国西北地区未来气候变化预测分析[D]. 武汉: 华中农业大学, 2023. |
[Hou Jiaqi. Prediction of future climate change in northwest China based on WRF model[D]. Wuhan: Huazhong Agricultural University, 2023.] | |
[19] | Skamarock W C, Klemp J B, Dudhia J, et al. A description of the advanced research WRF Version 3[C]// NCAR/TN 475+STR. NCAR Technical Note. Colorado: Mesoscale and Microscale Meteorology Division National Center for Atmospheric Research, 2009. |
[20] | Alexander L, Herold N. ClimPACT2[M]. Sydney: The University of New South Wales, 2016: 1-46. |
[21] | 赵雪岩. 无定河流域土地利用变化方式及对径流的影响研究[D]. 咸阳: 西北农林科技大学, 2023. |
[Zhao Xueyan. Study on land use change and its impact on runoff in Wuding River Basin[D]. Xianyang: Northwest A & F University, 2023.] | |
[22] |
马伟东, 刘峰贵, 周强, 等. 1961—2017年青藏高原极端降水特征分析[J]. 自然资源学报, 2020, 35(12): 3039-3050.
doi: 10.31497/zrzyxb.20201218 |
[Ma Weidong, Liu Fenggui, Zhou Qiang, et al. Characteristics of extreme precipitation over the Qinghai-Tibet Plateau from 1961 to 2017[J]. Journal of Natural Resources, 2020, 35(12): 3039-3050.]
doi: 10.31497/zrzyxb.20201218 |
|
[23] | 李胜利, 巩在武, 石振彬. 近50年来山东省极端降水指数变化特征分析[J]. 水土保持研究, 2016, 23(4): 120-127. |
[Li Shengli, Gong Zaiwu, Shi Zhenbin. Characteristics of change in extreme precipitation indices in Shandong Province in recent 50 years[J]. Research of Soil and Water Conservation, 2016, 23(4): 120-127.] | |
[24] | 王倩之, 刘凯, 汪明. NEX-GDDP降尺度数据对中国极端降水指数模拟能力的评估[J]. 气候变化研究进展, 2022, 18(1): 31-43. |
[Wang Qianzhi, Liu Kai, Wang Ming. Evaluation of extreme precipitation indices performance based on NEX-GDDP downscaling data over China[J]. Climate Change Research, 2022, 18(1): 31-43.] | |
[25] |
李宛鸿, 徐影. CMIP6模式对青藏高原极端气温指数模拟能力评估及预估[J]. 高原气象, 2023, 42(2): 305-319.
doi: 10.7522/j.issn.1000-0534.2022.00032 |
[Li Wanhong, Xu Ying. Evaluation and projection of extreme temperature indices over the Qinghai-Xizang Plateau by CMlP6 models[J]. Plateau Meteorology, 2023, 42(2): 305-319.]
doi: 10.7522/j.issn.1000-0534.2022.00032 |
|
[26] | Vourlioti P, Mamouka T, Agrafiotis A, et al. Medicane ianos: 4D-var data assimilation of surface and satellite observations into the numerical weather prediction model WRF[J]. Atmosphere, 2022, 13(10): 1683, doi: 10.3390/atmos13101683. |
[27] | Fu Y Y, Zhou Z X, Li J J, et al. Impact of aerosols on NPP in basins: Case study of WRF-solar in the Jinghe River Basin[J]. Remote Sensing, 2023, 15(7): 1908, doi: 10.3390/RS15071908. |
[28] | Shirali E, Nikbakht S A, Fathian H, et al. Evaluation of WRF and artificial intelligence models in short-term rainfall, temperature and flood forecast (case study)[J]. Journal of Earth System Science, 2020, 129(1): 1-16. |
[29] | Delfino R J, Bagtasa G, Hodges K, et al. Sensitivity of simulating Typhoon Haiyan (2013) using WRF: The role of cumulus convection, surface flux parameterizations, spectral nudging, and initial and boundary conditions[J]. Natural Hazards and Earth System Sciences, 2022, 22(10): 3285-3307. |
[30] | 田磊. 变化环境下黄土高原水文气候要素数值模拟及未来预测[D]. 咸阳: 西北农林科技大学, 2019. |
[Tian Lei. Numerical simulation and future prediction of hydrological and climatic factors in the Loess Plateau under changing environment[D]. Xianyang: Northwest A & F University, 2019.] | |
[31] |
方利, 王文杰, 蒋卫国, 等. 2000—2014年黑龙江流域(中国)植被覆盖时空变化及其对气候变化的响应[J]. 地理科学, 2017, 37(11): 1745-1754.
doi: 10.13249/j.cnki.sgs.2017.11.017 |
[Fang Li, Wang Wenjie, Jiang Weiguo, et al. Spatio-temporal variations of vegetation cover and its responses to climate change in the Heilongjiang Basin of China from 2000 to 2014[J]. Scientia Geographica Sinica, 2017, 37(11): 1745-1754.]
doi: 10.13249/j.cnki.sgs.2017.11.017 |
|
[32] |
李双双, 孔锋, 韩鹭, 等. 陕北黄土高原区极端降水时空变化特征及其影响因素[J]. 地理研究, 2020, 39(1): 140-151.
doi: 10.11821/dlyj020181067 |
[Li Shuangshuang, Kong Feng, Han Lu, et al. Spatiotemporal variability of extreme precipitation and influencing factors on the Loess Plateau in northern Shaanxi Province[J]. Geographical Research, 2020, 39(1): 140-151.] | |
[33] | 杨维涛, 孙建国, 康永泰, 等. 黄土高原地区极端气候指数时空变化[J]. 干旱区地理, 2020, 43(6): 1456-1466. |
[Yang Weitao, Sun Jianguo, Kang Yongtai, et al. Temporal and spatial changes of extreme weather indices in the Loess Plateau[J]. Arid Land Geography, 2020, 43(6): 1456-1466.]
doi: 10.12118/j.issn.1000-6060.2020.06.06 |
|
[34] |
黎珩, 朱冰冰, 边熇, 等. 1970—2020年黄土高原水蚀风蚀交错区极端降水时空变化研究及驱动因素分析[J]. 干旱区地理, 2024, 47(4): 539-548.
doi: 10.12118/j.issn.1000-6060.2023.194 |
[Li Heng, Zhu Bingbing, Bian He, et al. Temporal and spatial changes of extreme precipitationand its driving factors in the water-wind erosion interlacing area of the Loess Plateau from 1970 to 2020[J]. Arid Land Geography, 2024, 47(4): 539-548.]
doi: 10.12118/j.issn.1000-6060.2023.194 |
|
[35] | Cai Q F, Liu Y U, Fang C X, et al. Insight into spatial-temporal patterns of hydroclimate change on the Chinese Loess Plateau over the past 250 years, using new evidence from tree rings[J]. Science of the Total Environment, 2022, 850: 157960, doi: 10.1016/j.scitotenv.2022.157960. |
[36] | WMO. State of the global climate 2021: WMO provisional report[M]. Geneva: WMO, 2021: 1-4. |
[37] | Zhang P A, Sun W Y, Xiao P Q, et al. Driving factors of heavy rainfall causing flash floods in the middle reaches of the Yellow River: A case study in the Wuding River Basin, China[J]. Sustainability, 2022, 14(13): 8004, doi: 10.3390/su14138004. |
|