Arid Land Geography ›› 2024, Vol. 47 ›› Issue (11): 1887-1898.doi: 10.12118/j.issn.1000-6060.2023.719
• Climatology and Hydrology • Previous Articles Next Articles
QIN Gexia1,2(), MENG Zhiyuan3, LI Ni4()
Received:
2023-12-19
Revised:
2024-01-25
Online:
2024-11-25
Published:
2024-12-03
Contact:
LI Ni
E-mail:qingexia2021@163.com;lini_2004@163.com
QIN Gexia, MENG Zhiyuan, LI Ni. Dynamics of water use efficiency and its response to drought and land surface temperature on the Loess Plateau[J].Arid Land Geography, 2024, 47(11): 1887-1898.
Tab. 1
Key ecological restoration projects in the Yellow River Basin since the founding of the People’s Republic of China"
生态问题 | 实施的生态工程 | 实施期限 | 涉及区域 |
---|---|---|---|
水土流失 | 水土保持工程 | 1949年至今 | 黄河流域全域 |
林草退化 | 三北防护林体系建设工程 | 1978年至今 | 青海、甘肃、宁夏、内蒙古、陕西、山西 |
林草退化 | 天然林资源保护工程 | 1998—2020年 | 陕西、甘肃、青海、宁夏、内蒙古、河南、山西 |
林草退化 | 退耕还林还草 | 1999至今 | 黄河流域全域 |
土地沙化 | 京津唐风沙源治理工程 | 2000—2022年 | 陕西、山西、内蒙古 |
矿山破坏 | 废弃矿山治理工程 | 2005年至今 | 甘南黄河上游、内蒙古矿山、河南黄河三门峡段 |
湿地萎缩 | 湿地保护与修复工程 | 2006年至今 | 山东黄河河口、若尔盖湿地、黄河三角洲湿地 |
系统治理 | 山水林田湖草生态保护修复工程 | 2016至今 | 黄土高原、黄河三角洲、黄河中上游 |
Tab. 2
Contributions of LST and SPEI to the variation of WUE in spring, summer, and autumn /%"
季节 | LST对WUE变化贡献度面积占比 | SPEI对WUE变化贡献度面积占比 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
<-1% | -1%~0 | 0~1% | 1%~2% | 2%~3% | ≥3% | <-60% | -60%~-30% | -30%~0 | 0~30% | 30%~60% | ≥60% | ||
春季 | 5.28 | 15.88 | 27.84 | 20.92 | 13.14 | 16.94 | 4.44 | 13.81 | 55.13 | 21.74 | 3.58 | 1.30 | |
夏季 | 21.48 | 16.53 | 15.34 | 12.58 | 10.07 | 24.00 | 1.14 | 3.14 | 42.44 | 35.13 | 10.18 | 7.97 | |
秋季 | 13.58 | 41.98 | 35.68 | 7.35 | 1.18 | 0.23 | 0.01 | 0.33 | 79.91 | 19.70 | 0.05 | 0.00 |
Tab. 3
Overall contributions of LST and SPEI to WUE in spring, summer and autumn /%"
季节 | LST和SPEI总体对WUE变化贡献度面积占比 | |||||||
---|---|---|---|---|---|---|---|---|
<-60% | -60%~-40% | -40%~-20% | -20%~0 | 0~20% | 20%~40% | 40%~60% | ≥60% | |
春季 | 4.75 | 4.58 | 9.43 | 21.79 | 25.83 | 26.97 | 3.32 | 3.33 |
夏季 | 2.12 | 3.75 | 10.61 | 35.83 | 42.33 | 4.99 | 0.29 | 0.08 |
秋季 | 3.01 | 4.52 | 12.27 | 17.33 | 16.75 | 16.92 | 13.99 | 15.21 |
Tab. 4
Contributions of LST and SPEI to WUE in spring, summer and autumn in different land use types /%"
贡献度 | 草地 | 林地 | 耕地 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
春季 | 夏季 | 秋季 | 春季 | 夏季 | 秋季 | 春季 | 夏季 | 秋季 | |||
LST对WUE的贡献度 | 1.28 | 1.39 | -0.13 | 0.99 | 1.08 | -0.15 | 1.13 | 0.90 | 0.01 | ||
SPEI对WUE的贡献度 | -17.33 | 22.59 | -5.50 | -24.26 | 10.59 | -7.84 | -22.26 | 2.44 | -7.63 | ||
LST和SPEI总体对WUE的贡献度 | 6.80 | -5.09 | 10.82 | 1.93 | -2.12 | 20.31 | -11.60 | -5.83 | 18.92 |
[1] | Fu B J, Wang S, Liu Y, et al. Hydrogeomorphic ecosystem responses to natural and anthropogenic changes in the Loess Plateau of China[J]. Annual Review of Earth & Planetary Sciences, 2016, 45(1): 223-243. |
[2] | 郜国明, 田世民, 曹永涛, 等. 黄河流域生态保护问题与对策探讨[J]. 人民黄河, 2020, 42(9): 126-130. |
[Gao Guoming, Tian Shimin, Cao Yongtao, et al. Discussion on the issues and countermeasures of ecological conservation of the Yellow River Basin[J]. Yellow River, 2020, 42(9): 126-130.] | |
[3] | Feng X M, Fu B J, Piao S L, et al. Revegetation in China’s Loess Plateau is approaching sustainable water resource limits[J]. Nature Climate Change, 2016, 6: 1019-1022. |
[4] | Wang S, Fu B J, Piao S L, et al. Reduced sediment transport in the Yellow River due to anthropogenic changes[J]. Nature Geoscience, 2015, 9(1): 38-41. |
[5] | Zheng H, Lin H, Zhu X J, et al. Divergent spatial responses of plant and ecosystem water-use efficiency to climate and vegetation gradients in the Chinese Loess Plateau[J]. Global and Planetary Change, 2019, 181: 102995, doi: 10.1016/j.gloplacha.2019.102995. |
[6] | 裴婷婷, 李小雁, 吴华武, 等. 黄土高原植被水分利用效率对气候和植被指数的敏感性研究[J]. 农业工程学报, 2019, 35(5): 119-125. |
[Pei Tingting, Li Xiaoyan, Wu Huawu, et al. Sensitivity of vegetation water use efficiency to climate and vegetation index in Loess Plateau, China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(5): 119-125.] | |
[7] | 邵薇薇, 杨大文, 孙福宝, 等. 黄土高原地区植被与水循环的关系[J]. 清华大学学报(自然科学版), 2009, 49(12): 1958-1962. |
[Shao Weiwei, Yang Dawen, Sun Fubao, et al. Relationship between vegetation cover and water balance in the Loess Plateaus[J]. Journal of Tsinghua University (Science and Technology Edition), 2009, 49(12): 1958-1962.] | |
[8] |
刘宪锋, 胡宝怡, 任志远. 黄土高原植被生态系统水分利用效率时空变化及驱动因素[J]. 中国农业科学, 2018, 51(2): 302-314.
doi: 10.3864/j.issn.0578-1752.2018.02.010 |
[Liu Xianfeng, Hu Baoyi, Ren Zhiyuan. Spatiotemporal variation of water use efficiency and its driving forces on the Loess Plateau during 2000—2014[J]. Scientia Agricultura Sinica, 2018, 51(2): 302-314.] | |
[9] |
张良侠, 胡中民, 樊江文, 等. 区域尺度生态系统水分利用效率的时空变异特征研究进展[J]. 地球科学进展, 2014, 29(6): 691-699.
doi: 10.11867/j.issn.1001-8166.2014.06.0691 |
[Zhang Liangxia, Hu Zhongmin, Fan Jiangwen, et al. Advances in the spatiotemporal dynamics in ecosystem water use efficiency at regional scale[J]. Advances in Earth Science, 2014, 29(6): 691-699.]
doi: 10.11867/j.issn.1001-8166.2014.06.0691 |
|
[10] | 陈凌伟. 2001—2020年黄河流域水分利用效率时空变化及其对环境因素的响应[J]. 水土保持通报, 2022, 42(5): 222-230. |
[Chen Lingwei. Spatiotemporal variation of water use efficiency and its responses to environmental factors in Yellow River Basin during 2001—2020[J]. Bulletin of Soil and Water Conservation, 2022, 42(5): 222-230.] | |
[11] | Deng Y, Wang X H, Wang K, et al. Responses of vegetation greenness and carbon cycle to extreme droughts in China[J]. Agricultural and Forest Meteorology, 2021, 298-299: 108307, doi: 10.1016/j.agrformet.2020.108307. |
[12] |
卓静, 胡皓, 何慧娟, 等. 陕北黄土高原生态脆弱性时空变异及驱动因素分析[J]. 干旱区地理, 2023, 46(11): 1768-1777.
doi: 10.12118/j.issn.1000-6060.2023.027 |
[Zhou Jing, Hu Hao, He Huijuan, et al. Spatiotemporal variation and driving factors of ecological vulnerability in the Loess Plateau of northern Shaanxi[J]. Arid Land Geography, 2023, 46(11): 1768-1777.]
doi: 10.12118/j.issn.1000-6060.2023.027 |
|
[13] |
Zheng H, Lin H, Zhou W J, et al. Revegetation has increased ecosystem water-use efficiency during 2000—2014 in the Chinese Loess Plateau: Evidence from satellite data[J]. Ecological Indicators, 2019, 102: 507-518.
doi: 10.1016/j.ecolind.2019.02.049 |
[14] | Jin N, Ren W, Tao B, et al. Effects of water stress on water use efficiency of irrigated and rainfed wheat in the Loess Plateau, China[J]. Science of the Total Environment, 2018, 642: 1-11. |
[15] |
Yang Y T, Guan H D, Batelaan O, et al. Contrasting responses of water use efficiency to drought across global terrestrial ecosystems[J]. Scientific reports, 2016, 6: 23284, doi: 10.1038/srep23284.
pmid: 26983909 |
[16] | Piao S L, Friedlingstein P, Ciais P, et al. Changes in climate and land use have a larger direct impact than rising CO2 on global river runoff trends[J]. Proceedings of the National Academy of Sciences, 2007, 104(39): 15242-15247. |
[17] | Quan Q, Zhang F Y, Tian D S, et al. Transpiration dominates ecosystem water use efficiency in response to warming in an alpine meadow[J]. Journal of Geophysical Research Biogeosciences, 2018, 123: 453-466. |
[18] | Jongen M, Pereira J S, Aires L M J, et al. The effects of drought and time of precipitation on the inter-annual variation in ecosystem-atmosphere exchange in a Mediterranean grassland[J]. Agricultural and Forest Meteorology, 2011, 151: 595-606. |
[19] | Scurlock J M O, Cramer W, Olson R J, et al. Terrestrial NPP: Toward a consistent data set for global model evaluation[J]. Ecological Applications, 1999, 9(3): 913-919. |
[20] | Mu Q Z, Zhao M S, Running S W. Improvements to a MODIS global terrestrial evapotranspiration algorithm[J]. Remote Sensing of Environment, 2021, 115(8): 1781-1800. |
[21] |
Yang J, Huang X. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019[J]. Earth System Science Data, 2021, 13: 3907-3925.
doi: 10.5194/essd-13-3907-2021 |
[22] |
张永瑞, 张岳军, 靳泽辉, 等. 基于SPEI指数的黄土高原夏季干旱时空特征分析[J]. 生态环境学报, 2019, 28(7): 1322-1331.
doi: 10.16258/j.cnki.1674-5906.2019.07.005 |
[Zhang Yongrui, Zhang Yuejun, Jin Zehui, et al. The temporal and spatial characteristics of summer drought in the Loess Plateau based on SPEI[J]. Ecology and Environmental Sciences, 2019, 28(7): 1322-1331.] | |
[23] | Sen P. Estimates of the regression coefficient based on Kendall’s tau[J]. Journal of the American Statistical Association, 1968, 63: 1379-1389. |
[24] |
刘佳琪, 周璐红, 席小雅. 2000—2020年黄河流域土地生态质量及其变化趋势预测[J]. 干旱区地理, 2023, 46(10): 1654-1662.
doi: 10.12118/j.issn.1000-6060.2022.634 |
[Liu Jiaqi, Zhou Luhong, Xi Xiaoya. Land ecological quality and its change trend prediction in the Yellow River Basin from 2000 to 2020[J]. Arid Land Geography, 2023, 46(10): 1654-1662.]
doi: 10.12118/j.issn.1000-6060.2022.634 |
|
[25] | Zhang T, Huang Y. Estimating the impacts of warming trends on wheat and maize in China from 1980 to 2008 based on county level data[J]. International Journal of Climatology, 2013, 33(3): 699-708. |
[26] | Su C H, Fu B J. Evolution of ecosystem services in the Chinese Loess Plateau under climatic and land use changes[J]. Global and Planetary Change, 2013, 101: 119-128. |
[27] | Zhang T, Peng J, Liang W, et al. Spatial-temporal patterns of water use efficiency and climate controls in China’s Loess Plateau during 2000—2010[J]. Science of the Total Environment, 2016, 565: 105-122. |
[28] | Yan S, Piao S L, Huang M T, et al. Global patterns and climate drivers of water-use efficiency in terrestrial ecosystems deduced from satellite-based datasets and carbon cycle models[J]. Global Ecology and Biogeography, 2016, 25(3): 311-323. |
[29] | Gao Y, Zhu X J, Yu G R, et al. Water use efficiency threshold for terrestrial ecosystem carbon sequestration in China under afforestation[J]. Agricultural and Forest Meteorology, 2014, 195-196: 32-37. |
[30] | Liu Y B, Xiao J F, Ju W M, et al. Water use efficiency of China’s terrestrial ecosystems and responses to drought[J]. Scientific Report, 2015, 5: 13799, doi: 10.1038/srep13799. |
[31] | Lian X, Piao S L, Chen A P, et al. Multifaceted characteristics of dryland aridity changes in a warming world[J]. Nature Reviews Earth & Environment, 2021, 2: 232-250. |
[32] |
Zhao M S, Running S W. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009[J]. Science, 2010, 329: 940-943.
doi: 10.1126/science.1192666 pmid: 20724633 |
[33] | Hu Z, Yu G, Wang Q, et al. Ecosystem level water use efficiency: A review[J]. Acta Ecologica Sinica, 2009, 29(3): 1498-1507. |
[1] | GONG Dongdong, GAO Fan, WU Bin, LIU Kun. Spatiotemporal change of groundwater drought in the plain area of Xinjiang based on GRACE and its response to meteorological drought [J]. Arid Land Geography, 2024, 47(9): 1496-1507. |
[2] | LIU Yu, MEI Hua, FAN Wenbo, REN Congzhe, WANG Shiwei, LI Shunshun. Temporal and spatial characteristics of drought in the Ta’e Basin from 1992 to 2022 based on the SPEI index [J]. Arid Land Geography, 2024, 47(8): 1338-1347. |
[3] | LI Hui, LIU Tiejun, WANG Shaohui, LIU Dongwei. Spatial and temporal variation of water use efficiency and its influencing factors in desert steppe of Inner Mongolia from 2001 to 2021 [J]. Arid Land Geography, 2024, 47(6): 993-1003. |
[4] | WANG Dai, CUI Yang, WANG Suyan, ZHANG Wen. Interdecadal changes and risk assessment of drought events in Ningxia from 1961 to 2020 [J]. Arid Land Geography, 2024, 47(5): 785-797. |
[5] | XIANG Yanyun, WANG Yi, CHEN Yaning, ZHANG Qifei, ZHANG Yujie. Prediction of future hydrological drought risk in the Yarkant River Basin based on CMIP6 models [J]. Arid Land Geography, 2024, 47(5): 798-809. |
[6] | LI Heng, ZHU Bingbing, BIAN He, WANG Rong, TANG Xinyi. Temporal and spatial changes in extreme precipitation and its driving factors in the water-wind erosion crisscross region of the Loess Plateau from 1970 to 2020 [J]. Arid Land Geography, 2024, 47(4): 539-548. |
[7] | HUANG Manjie, LI Yanzhong, WANG Yuangang, YU Zhiguo, ZHUANG Jiacheng, XING Yincong. Evaluation of meteorological drought performance of multisource remote-sensing precipitation products in arid northwest China [J]. Arid Land Geography, 2024, 47(4): 549-560. |
[8] | LU Dongyan, ZHU Xiufang, TANG Mingxiu, GUO Chunhua, LIU Tingting. Assessment of drought risk changes in China under different temperature rise scenarios [J]. Arid Land Geography, 2024, 47(3): 369-379. |
[9] | MENG Xianwen, CAO Jun, XUE Zhanjin. Spatiotemporal changes of the ecosystem service value for mining area in Loess Plateau: A case of Pingshuo mining area [J]. Arid Land Geography, 2024, 47(3): 455-464. |
[10] | REN Zijian, WANG Jianglin, XU Henian, QIN Chun. Evolution and driving factors of megadrought and pluvial events in the Qilian Mountains during the past 500 years [J]. Arid Land Geography, 2024, 47(2): 214-227. |
[11] | BAO Wei, HUANG Xiaojun, JI Wangdi. Evaluation of heat vulnerability and its spatial-temporal variation in the Guanzhong area [J]. Arid Land Geography, 2024, 47(11): 1863-1875. |
[12] | LU Dongyan, ZHU Xiufang, LIU Tingting, ZHANG Shizhe. Changes in meteorological drought characteristics in China under the 2 ℃ temperature rise scenario [J]. Arid Land Geography, 2023, 46(8): 1227-1237. |
[13] | CHENG Shuo, LI Yanzhong, XING Yincong, YU Zhiguo, WANG Yuangang, HUANG Manjie. Simulation performance of remote sensing precipitation products on hydrological drought characteristics in the source region of the Yellow River [J]. Arid Land Geography, 2023, 46(7): 1063-1072. |
[14] | KANG Ligang, CAO Shengkui, CAO Guangchao, YAN Li, CHEN Lianxuan, LI Wenbin, ZHAO Haoran. Spatiotemporal variation of land surface temperature in Qinghai Lake Basin [J]. Arid Land Geography, 2023, 46(7): 1084-1097. |
[15] | SHI Jiqing, GAN Chenlong, ZHOU Kanshe, YUAN Lei, ZHANG Dongdong. Spatiotemporal distribution of drought and hazard assessment of highland barley in Tibet [J]. Arid Land Geography, 2023, 46(7): 1098-1110. |
|