Arid Land Geography ›› 2021, Vol. 44 ›› Issue (6): 1707-1716.doi: 10.12118/j.issn.1000–6060.2021.06.19
• Earth Information Sciences • Previous Articles Next Articles
Received:
2021-01-12
Revised:
2021-09-17
Online:
2021-11-25
Published:
2021-12-03
Contact:
Keqin DUAN
E-mail:zhangqian18@snnu.edu.cn;kqduan@snnu.edu.cn
ZHANG Qian,DUAN Keqin. Characteristics of precipitation in the Pamirs in 2017 based on WRF simulation[J].Arid Land Geography, 2021, 44(6): 1707-1716.
[1] |
Immerzeel W W, Lutz A F, Andrade M, et al. Importance and vulnerability of the world’s water towers[J]. Nature, 2020, 577(7790):364-369.
doi: 10.1038/s41586-019-1822-y |
[2] | Pohl E, Knoche M, Gloaguen R, et al. The hydrological cycle in the high Pamir Mountains: How temperature and seasonal precipitation distribution influence stream flow in the Gunt catchment, Tajikistan[J]. Earth Surface Dynamics Discussions, 2014, 2(2):1155-1215. |
[3] | 易颖, 刘时银, 朱钰, 等. 2002—2018年叶尔羌河流域积雪时空变化研究[J]. 干旱区地理, 2021, 44(1):15-26. |
[ Yi Ying, Liu Shiyin, Zhu Yu, et al. Spatiotemporal variation of snow cover in the Yarkant River Basin during 2002—2018[J]. Arid Land Geography, 2021, 44(1):15-26. ] | |
[4] |
Lutz A F, Immerzeel W W, Kraaijenbrink P D, et al. Climate change impacts on the upper Indus hydrology: Sources, shifts and extremes[J]. PLoS One, 2016, 11(11):e0165630, doi: 10.1371/journal.pone.0165630.
doi: 10.1371/journal.pone.0165630 |
[5] |
Mukhopadhyay B, Khan A. A reevaluation of the snowmelt and glacial melt in river flows within upper Indus Basin and its significance in a changing climate[J]. Journal of Hydrology, 2015, 527(1):119-132.
doi: 10.1016/j.jhydrol.2015.04.045 |
[6] | Messerli B, Viviroli D, Weingartner R, et al. 世界山地: 21世纪脆弱的“水塔”[J]. AMBIO-人类环境杂志, 2004(增刊1):30-34, 57. |
[ Messerli B, Viviroli D, Weingartner R, et al. The mountains of the world: The fragile “Water Tower” in the 21 st century[J]. AMBIO-Journal of the Human Environment , 2004(Suppl. 1):30-34, 57. ] | |
[7] |
Immerzeel W W, Bierkens M F P. Seasonal prediction of monsoon rainfall in three Asian river basins: The importance of snow cover on the Tibetan Plateau[J]. International Journal of Climatology, 2010, 30(12):1835-1842.
doi: 10.1002/joc.v30:12 |
[8] |
Pohl E, Gloaguen R, Seiler R. Remote sensing-based assessment of the variability of winter and summer precipitation in the Pamirs and their effects on hydrology and hazards using harmonic time series analysis[J]. Remote Sensing, 2015, 7(8):9727-9752.
doi: 10.3390/rs70809727 |
[9] | 郝海超, 郝兴明, 花顶, 等. 2000—2018年中亚五国水分利用效率对气候变化的响应[J]. 干旱区地理, 2021, 44(1):1-14. |
[ Hao Haichao, Hao Xingming, Hua Ding, et al. Response of water use efficiency to climate change in five Central Asian countries from 2000 to 2018[J]. Arid Land Geography, 2021, 44(1):1-14. ] | |
[10] | 陈发虎, 陈建徽, 黄伟. 中纬度亚洲现代间冰期气候变化的“西风模式”讨论[J]. 地学前缘, 2009, 16(6):23-32. |
[ Chen Fahu, Chen Jianhui, Huang Wei. Discussion on the “westerly model” of mid-latitude Asian modern interglacial climate change[J]. Earth Science Frontier, 2009, 16(6):23-32. ] | |
[11] | 蒋宗立, 王磊, 张震, 等. 2000—2014年喀喇昆仑山音苏盖提冰川表面高程变化[J]. 干旱区地理, 2020, 43(1):12-19. |
[ Jiang Zongli, Wang Lei, Zhang Zhen, et al. Surface elevation changes of Yengisogat Glacier between 2000 and 2014[J]. Arid Land Geography, 2020, 43(1):12-19. ] | |
[12] | 陈发虎, 黄伟, 靳立亚, 等. 全球变暖背景下中亚干旱区降水变化特征及其空间差异[J]. 中国科学: 地球科学, 2011, 41(11):1647-1657. |
[ Chen Fahu, Huang Wei, Jin Liya, et al. Spatiotemporal precipitation variations in the arid Central Asia in the context of global warming[J]. Scientia Sinica (Terrae), 2011, 41(11):1647-1657. ] | |
[13] |
Bai Y Q, Wang J L, Wang Y J, et al. Spatio-temporal distribution of drought in the Belt and Road Area during 1998—2015 based on TRMM precipitation data[J]. Journal of Resources and Ecology, 2017, 8(6):559-570.
doi: 10.5814/j.issn.1674-764x.2017.06.002 |
[14] |
Lioubimtseva E, Cole R, Adams J M, et al. Impacts of climate and land-cover changes in arid lands of Central Asia[J]. Journal of Arid Environments, 2005, 62(2):285-308.
doi: 10.1016/j.jaridenv.2004.11.005 |
[15] |
Huang W, Chen F H, Feng S, et al. Interannual precipitation variations in the mid-latitude Asia and their association with large-scale atmospheric circulation[J]. Chinese Science Bulletin, 2013, 58(32):3962-3968.
doi: 10.1007/s11434-013-5970-4 |
[16] |
Yin Z Y, Wang H L, Liu X D. A comparative study on precipitation climatology and interannual variability in the lower midlatitude east Asia and Central Asia[J]. Journal of Climate, 2014, 27(20):7830-7848.
doi: 10.1175/JCLI-D-14-00052.1 |
[17] |
Aizen E M, Aizen V B, Melack J M, et al. Precipitation and atmospheric circulation patterns at mid-latitudes of Asia[J]. International Journal of Climatology, 2001, 21(5):535-556.
doi: 10.1002/(ISSN)1097-0088 |
[18] |
Bothe Oliver, Fraedrich Klaus, Xiuhua Z. Precipitation climate of Central Asia and the large-scale atmospheric circulation[J]. Theoretical and Applied Climatology, 2012, 108(3-4):345-354.
doi: 10.1007/s00704-011-0537-2 |
[19] |
Hu Z Y, Zhou Q M, Chen X, et al. Variations and changes of annual precipitation in Central Asia over the last century[J]. International Journal of Climatology, 2017, 37:157-170.
doi: 10.1002/joc.2017.37.issue-S1 |
[20] |
Norris J, Carvalho L M V, Jones C, et al. The spatiotemporal variability of precipitation over the Himalaya: Evaluation of one-year WRF model simulation[J]. Climate Dynamics, 2016, 49(5-6):2179-2204.
doi: 10.1007/s00382-016-3414-y |
[21] |
Qiu Y, Hu Q, Zhang C. WRF simulation and downscaling of local climate in Central Asia[J]. International Journal of Climatology, 2017, 37:513-528.
doi: 10.1002/joc.2017.37.issue-S1 |
[22] | 辛蕊, 段克勤. 2017年夏季秦岭降水的数值模拟及其空间分布[J]. 地理学报, 2019, 74(11):137-149. |
[ Xin Rui, Duan Keqin. Numerical simulation and spatial distribution of summer precipitation in the Qinling Mountains[J]. Acta Geographica Sinica, 2019, 74(11):137-149. ] | |
[23] |
Xie P P, Chen M Y, Yang S, et al. A gauge-based analysis of daily precipitation over east Asia[J]. Journal of Hydrometeorology, 2007, 8(3):607-626.
doi: 10.1175/JHM583.1 |
[24] |
Rana S, Mcgregor J, Renwick J. Wintertime precipitation climatology and ENSO sensitivity over central southwest Asia[J]. International Journal of Climatology, 2017, 37(3):1494-1509.
doi: 10.1002/joc.4793 |
[25] | 田亚林. 中亚地区极端降水时空分布及重现期分析[D]. 兰州: 兰州交通大学, 2020. |
[ Tian Yalin. Spatial-temporal distribution and return period analysis of extreme precipitation in Central Asia[D]. Lanzhou: Lanzhou Jiaotong University, 2020. ] | |
[26] | 陈淑莹, 胡琪, 张弛, 等. WRF模式在天山地区模拟能力的敏感性评估[J]. 干旱区研究, 2019, 36(1):193-203. |
[ Chen Shuying, Hu Qi, Zhang Chi, et al. Evaluation on the sensitivity of WRF model in the Tianshan Mountains[J]. Arid Zone Research, 2019, 36(1):193-203. ] | |
[27] | Caves J, Bayshashov B, Zhamangara A, et al. Tracking moisture pathways to Asia since the late Cretaceous: The competing influences of westerly and monsoonal dynamics[C]// Egu General Assembly Conference Abstracts. Egu, 2016: EPSC2016-10689. |
[28] |
Tripathee L, Guo J, Kang S, et al. Spatial and temporal distribution of total mercury in atmospheric wet precipitation at four sites from the Nepal-Himalayas[J]. Science of the Total Environment, 2018, 655:1207-1217.
doi: 10.1016/j.scitotenv.2018.11.338 |
[29] | 吴钩, 白爱娟. 青藏高原季风环流情况与中亚季风降水特征分析[J]. 成都信息工程大学学报, 2016, 31(1):76-85. |
[ Wu Gou, Bai Aijuan. Analysis on the characteristics of Tibetan Plateau’s monsoon circulation and Central Asia’s rainfall[J]. Journal of Chengdu University of Information Technology, 2016, 31(1):76-85. ] | |
[30] | 史玉光, 孙照渤. 新疆水汽输送的气候特征及其变化[J]. 高原气象, 2008, 27(2):310-319. |
[ Shi Yuguang, Sun Zhaobo. Climate characteristics of water vapor transportation and its variation over Xinjiang[J]. Plateau Meteorology, 2008, 27(2):310-319. ] | |
[31] | Bazhev A B, Kotlyakov V M, Varnakova G M. The problems of present-day glaciation of the Pamir-Alai [C]//Proceedings of the Moscow Symposium 1971. Wallingford: IAHS Publication, 1975, 104:11-21. |
[32] |
Glazyrin G E. Influences of deglaciation on the river run-off in Central Asia[J]. Lëd i Sneg, 2013: doi: 10.15356/2076-6734-2013-3-20-25.
doi: 10.15356/2076-6734-2013-3-20-25 |
[33] | 胡汝骥, 姜逢清, 王亚俊, 等. 中亚(五国)干旱生态地理环境特征[J]. 干旱区研究, 2014, 31(1):1-12. |
[ Hu Ruji, Jiang Fengqing, Wang Yajun, et al. Arid ecological and geographical conditions in five countrites of Central Asia[J]. Arid Zone Research, 2014, 31(1):1-12. ] | |
[34] | 汤懋苍. 祁连山区降水的地理分布特征[J]. 地理学报, 1985, 12(4):323-332. |
[ Tang Maocang. The distribution of precipitation in mountain Qilian (Nanshan)[J]. Acta Geographica Sinica, 1985, 12(4):323-332. ] | |
[35] | 陈炯, 王建捷. 边界层参数化方案对降水预报的影响[J]. 应用气象学报, 2006, 17(增刊1):11-17. |
[ Chen Jiong, Wang Jianjie. Mesoscale precipitation simulation sensitivity to PBL parameterization[J]. Journal of Applied Meteorological Science, 2006, 17(Suppl. 1):11-17. ] | |
[36] | 吕光辉, 于恩涛, 向伟玲, 等. WRF模式分辨率对新疆异常降雨天气要素模拟的影响[J]. 气候与环境研究, 2009, 14(1):85-96. |
[ Lü Guanghui, Yu Entao, Xiang Weiling, et al. Effect of horizontal and vertical resolution on WRF simulation of the unusual rainfall event in Xinjiang[J]. Climatic and Environmental Research, 2009, 14(1):85-96. ] | |
[37] | 陶健红, 张新荣, 张铁军, 等. WRF模式对一次河西暴雪的数值模拟分析[J]. 高原气象, 2008, 27(1):68-75. |
[ Tao Jianhong, Zhang Xinrong, Zhang Tiejun, et al. Simulation and analysis of heavy snowfall in the Hexi Corridor with WRF model[J]. Plateau Meteorology, 2008, 27(1):68-75. ] | |
[38] | 许建伟, 高艳红. WRF模式对夏季黑河流域气温和降水的模拟及检验[J]. 高原气象, 2014, 33(4):937-946. |
[ Xu Jianwei, Gao Yanhong. Validation of summer surface air temperature and precipitation simulation over Heihe River Basin[J]. Plateau Meteorology, 2014, 33(4):937-946. ] | |
[39] | 陈仁升, 康尔泗, 杨建平, 等. 内陆河流域分布式日出山径流模型——以黑河干流山区流域为例[J]. 地球科学进展, 2003, 18(2):198-206. |
[ Chen Rensheng, Kang Ersi, Yang Jianping, et al. A distributed daily runoff model of inland river mountainous basin[J]. Advances in Earth Science, 2003, 18(2):198-206. ] | |
[40] | 舒守娟, 王元, 李艳. 西藏高原地形扰动对其降水分布影响的研究[J]. 水科学进展, 2006, 17(5):585-591. |
[ Shu Shoujuan, Wang Yuan, Li Yan. Effect of topographic perturbation on the precipitation distribution in Tibetan Plateau[J]. Advances in Water Science, 2006, 17(5):585-591. ] |
|