Arid Land Geography ›› 2021, Vol. 44 ›› Issue (6): 1717-1728.doi: 10.12118/j.issn.1000–6060.2021.06.20
• Earth Information Sciences • Previous Articles Next Articles
YUAN Panli1,2,3(),WANG Chuanjian4,ZHAO Qingzhan1,2,3(
),WANG Xuewen1,2,3,REN Yuanyuan1,2,YANG Qiyuan1,2
Received:
2020-12-08
Revised:
2021-04-27
Online:
2021-11-25
Published:
2021-12-03
Contact:
Qingzhan ZHAO
E-mail:yuanpanli@stu.shzu.edu.cn;zqz_inf@shzu.edu.cn
YUAN Panli,WANG Chuanjian,ZHAO Qingzhan,WANG Xuewen,REN Yuanyuan,YANG Qiyuan. Dynamic monitoring of land-use/land-cover change in cold and arid region based on deep learning: A case study of Mosuowan reclamation area in Xinjiang[J].Arid Land Geography, 2021, 44(6): 1717-1728.
Tab. 3
Evaluation indexes of different models"
模型 | 评价指标 | |||||
---|---|---|---|---|---|---|
OA/% | Kappa | precision/% | recall/% | F1值 | MIoU | |
MLC | 62.73 | 0.42 | 52.78 | 71.17 | 0.51 | 0.38 |
SVM | 68.32 | 0.48 | 52.12 | 73.18 | 0.54 | 0.41 |
RF | 76.35 | 0.59 | 75.59 | 85.69 | 0.75 | 0.64 |
DeepLabv3+ (Xception) | 96.06 | 0.96 | 87.69 | 83.78 | 0.86 | 0.77 |
DeepLabv3+ (MobileNet) | 94.77 | 0.94 | 74.59 | 75.82 | 0.75 | 0.62 |
SegNet (ResNet50) | 95.47 | 0.95 | 81.94 | 81.04 | 0.81 | 0.71 |
U-Net (MobileNet) | 95.83 | 0.95 | 85.23 | 83.13 | 0.83 | 0.74 |
PSPNet (MobileNet) | 95.52 | 0.90 | 85.34 | 81.08 | 0.83 | 0.74 |
Tab. 4
Comparison of classification results of different classification models for each element"
地物类型 | 指标 | 语义分割模型 | ||||
---|---|---|---|---|---|---|
DeepLabv3+ (Xception) | DeepLabv3+ (MobileNet) | SegNet (ResNet50) | U-Net (MobileNet) | PSPNet (MobileNet) | ||
农用地 | precision/% | 91.25 | 89.02 | 89.46 | 91.68 | 89.27 |
recall/% | 91.16 | 88.82 | 88.66 | 89.31 | 86.85 | |
F1值 | 0.91 | 0.88 | 0.89 | 0.90 | 0.87 | |
建筑用地 | precision/% | 81.12 | 66.73 | 78.65 | 80.79 | 75.83 |
recall/% | 70.36 | 47.95 | 63.46 | 69.07 | 71.68 | |
F1值 | 0.74 | 0.53 | 0.69 | 0.74 | 0.73 | |
水体 | precision/% | 99.24 | 95.58 | 97.80 | 97.76 | 96.31 |
recall/% | 90.19 | 96.37 | 95.37 | 95.21 | 96.77 | |
F1值 | 0.94 | 0.96 | 0.97 | 0.96 | 0.97 | |
荒漠 | precision/% | 81.72 | 80.17 | 77.16 | 77.02 | 79.55 |
recall/% | 77.64 | 67.50 | 74.66 | 78.30 | 70.27 | |
F1值 | 0.78 | 0.70 | 0.75 | 0.76 | 0.73 |
Tab. 7
Change information of surface feature types in Mosuowan reclamation area from 1998 to 2020"
地物类型 | 面积变化/km2 | 单一土地利用动态度/% | ||||
---|---|---|---|---|---|---|
1998—2008年 | 2008—2020年 | 1998—2020年 | 1998—2008年 | 2008—2020年 | 1998—2020年 | |
农用地 | +162.43 | +22.77 | +185.20 | +1.96 | +0.23 | +1.01 |
建筑用地 | +4.65 | +32.12 | +36.77 | +2.00 | +11.49 | +7.17 |
水体 | -5.49 | +2.49 | -3.00 | -1.43 | +0.76 | -0.36 |
荒漠 | -160.86 | -56.83 | -217.69 | -2.87 | -1.42 | -1.76 |
[1] | 董金玮, 吴文斌, 黄健熙, 等. 农业土地利用遥感信息提取的研究进展与展望[J]. 地球信息科学报, 2020, 22(4):772-783. |
[ Dong Jinwei, Wu Wenbin, Huang Jianxi, et al. State of the art and perspective of agricultural land use remote sensing information extraction[J]. Journal of Geo-information Science, 2020, 22(4):772-783. ] | |
[2] |
Gaur S, Mittal A, Bandyopadhyay A, et al. Spatio-temporal analysis of land use and land cover change: A systematic model inter-comparison driven by integrated modelling techniques[J]. International Journal of Remote Sensing, 2020, 41(23):9229-9255.
doi: 10.1080/01431161.2020.1815890 |
[3] | 陈劲松, 韩宇, 陈工, 等. 基于多源遥感信息融合的广东省土地利用分类方法——以雷州半岛为例[J]. 生态学报, 2014, 34(24):7233-7242. |
[ Chen Jinsong, Han Yu, Chen Gong, et al. Land utilization mapping in Guangdong Province based on integration of optical and SAR remote sensing data[J]. Acta Ecologica Sinica, 2014, 34(24):7233-7242. ] | |
[4] | 李路, 孙桂丽, 陆海燕, 等. 喀什地区生态脆弱性时空变化及驱动力分析[J]. 干旱区地理, 2021, 44(1):277-288. |
[ Li Lu, Sun Guili, Lu Haiyan, et al. Spatial-temporal variation and driving forces of ecological vulnerability in Kashi Prefecture[J]. Arid Land Geography, 2021, 44(1):277-288. ] | |
[5] |
Huang B, Zhao B, Song Y M. Urban land-use mapping using a deep convolutional neural network with high spatial resolution multispectral remote sensing imagery[J]. Remote Sensing of Environment, 2018, 214:73-86.
doi: 10.1016/j.rse.2018.04.050 |
[6] | 宋德娟, 张承明, 杨晓霞, 等. 高分二号遥感影像提取冬小麦空间分布[J]. 遥感学报, 2018, 24(5):596-608. |
[ Song Dejuan, Zhang Chengming, Yang Xiaoxia, et al. Extracting winter wheat spatial distribution information from GF-2 image[J]. Journal of Remote Sensing, 2018, 24(5):596-608. ] | |
[7] | Noi P T, Kappas M. Comparison of random forest, k-nearest neighbor, and support vector machine classifiers for land cover classification using Sentinel-2 imagery[J]. Sensors, 2018, 18(1):7233-7242. |
[8] |
Son S, Park S, Lee S, et al. An assessment of support sector machine for land cover classification over South Korea[J]. Earth Resources and Environmental Remote Sensing/GIS Applications X, 2019, 19(10):2308, doi: 10.1117/12.2533045.
doi: 10.1117/12.2533045 |
[9] |
Zhang C, Yue P, Tapete D, et al. A multi-level context-guided classification method with object-based convolutional neural network for land cover classification using very high resolution remote sensing images[J]. International Journal of Applied Earth Observation and Geoinformation, 2020, 88:102086, doi: 10.1016/j.jag.2020.102086.
doi: 10.1016/j.jag.2020.102086 |
[10] | 孙坤, 鲁铁定. 顾及多尺度分割参数的FNEA面向对象分类[J]. 测绘通报, 2018(3):43-48. |
[ Sun Kun, Lu Tieding. Research on FNEA object-oriented classification based on multi-scale partition parameters[J]. Bulletin of Surveying and Mapping, 2018(3):43-48. ] | |
[11] | Zhu X X, Devis T, Mou L C, et al. Deep learning in remote sensing: A comprehensive review and list of resources[J]. IEEE Geoscience and Remote Sensing Magazine, 2017, 5(4):8-36. |
[12] | 汪传建, 赵庆展, 马永建, 等. 基于卷积神经网络的无人机遥感农作物分类[J]. 农业机械学报, 2019, 50(11):161-168. |
[ Wang Chuanjian, Zhao Qingzhan, Ma Yongjian, et al. Crop identification of drone remote sensing based on convolutional neural network[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(11):161-168. ] | |
[13] |
Vali Ava, Comai Sara, Matteucci Matto. Deep learning for land use and land cover classification based on hyperspectral and multispectral earth observation data: A review[J]. Remote Sensing, 2020, 12(15):2495, doi: 10.3390/rs12152495.
doi: 10.3390/rs12152495 |
[14] |
Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 39(4):640-651.
doi: 10.1109/TPAMI.2016.2572683 |
[15] |
Badrinarayanan V, Kendall A, Cipolla R. SegNet: A deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12):2481-2495.
doi: 10.1109/TPAMI.2016.2644615 pmid: 28060704 |
[16] | Ronneberger O, Fischer P, Brox T. U-Net: Convolutional networks for biomedical image segmentation [C]//Maier-Hein, Fritzsche K, Lehmann T, et al. Informatik aktuell. Heidelberg: Springer, 2015: 234-241. |
[17] | Zhao H, Shi J, Qi X, et al. Pyramid scene parsing network [C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. USA: IEEE, 2017: 6230-6239. |
[18] |
Chen L C, Papandreou G, Kokkinos I, et al. DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4):834-848.
doi: 10.1109/TPAMI.2017.2699184 |
[19] |
Chen L C, Papandreou G, Schroff F, et al. Rethinking atrous convolution for semantic image segmentation[J]. CoRR, 2017, doi: abs/1706.05587.
doi: abs/1706.05587 |
[20] | Chen L C, Zhu Y K, Papandreou G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation [C]//Ferrari V, Hebert M, Sminchisescu C, et al. Computer Vision-ECCV 2018. Lecture Notes in Computer Science. Munich: Springer, 2018: 833-851. |
[21] | 许慧敏, 齐华, 南轲, 等. 结合nDSM的高分辨率遥感影像深度学习分类方法[J]. 测绘通报, 2019(8):63-67. |
[ Xu Huimin, Qi Hua, Nan Ke, et al. High-resolution remote sensing image classification by combining deep learning with nDSM[J]. Bulletin of Surveying and Mapping, 2019(8):63-67. ] | |
[22] | 杨建宇, 周振旭, 杜贞容, 等. 基于SegNet语义模型的高分辨率遥感影像农村建设用地提取[J]. 农业工程学报, 2019, 35(5):259-266. |
[ Yang Jianyu, Zhou Zhenxu, Du Zhenrong, et al. Rural construction land extraction from high spatial resolution remote sensing image based on SegNet semantic segmentation model[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(5):259-266. ] | |
[23] | 刘文雅, 岳安志, 季珏, 等. 基于DeepLabv3+语义分割模型的GF-2影像城市绿地提取[J]. 国土资源遥感, 2020, 32(2):124-133. |
[ Liu Wenyan, Yue Anzhi, Ji Jue, et al. Urban green space extraction from GF-2 remote sensing image based on DeepLabv3+ semantic segmentation model[J]. Remote Sensing for Land & Resources, 2020, 32(2):124-133. ] | |
[24] | 马新萍, 韩申山, 王磊, 等. 大西安地区土地利用类型时空演变分析[J]. 干旱区地理, 2020, 43(2):499-507. |
[ Ma Xinping, Han Shenshan, Wang Lei, et al. Spatial and temporal evolution of land use types in the greater Xi’an area[J]. Arid Land Geography, 2020, 43(2):499-507. ] | |
[25] | 田艳君, 石莹, 帅艳民, 等. 基于遥感时序特征的地表覆被信息提取[J]. 干旱区地理, 2021, 44(2):450-459. |
[ Tian Yanjun, Shi Ying, Shuai Yanmin, et al. Land cover information retrieval from temporal features based remote sensing images[J]. Arid Land Geography, 2021, 44(2):450-459. ] | |
[26] | 白燕英, 高聚林, 张宝林. 基于Landsat 8影像时间序列NDVI的作物种植结构提取[J]. 干旱区地理, 2019, 42(4):893-901. |
[ Bai Yanying, Gao Julin, Zhang Baolin. Extraction of crop planting structure based on time-series NDVI of Landsat 8 images[J]. Arid Land Geography, 2019, 42(4):893-901. ] | |
[27] | 顾炼. 基于深度学习的遥感图像建筑物检测及其变化检测研究[D]. 杭州: 浙江工商大学, 2018. |
[ Gu Lian. Detection for buildings and their changes in remote sensing images based on deep learning[D]. Hangzhou: Zhejiang Gongshang University, 2018. ] | |
[28] |
Venugopal N. Automatic semantic segmentation with deeplab dilated learning network for change detection in remote sensing images[J]. Neural Processing Letters, 2020, 51(3):2355-2377.
doi: 10.1007/s11063-019-10174-x |
[29] |
Liu R Y, Kuffer M, Persello C. The temporal dynamics of slums employing a CNN-based change detection approach[J]. Remote Sensing, 2019, 11(23):2844, doi: 10.3390/rs11232844.
doi: 10.3390/rs11232844 |
[30] | 季顺平, 田思琦, 张驰. 利用全空洞卷积神经元网络进行城市土地覆盖分类与变化检测[J]. 武汉大学学报(信息科学版), 2020, 45(2):233-241. |
[ Ji Shunping, Tian Siqi, Zhang Chi. Urban land cover classification and change detection using fully atrous convolutional neural network[J]. Geomatics and Information Science of Wuhan University, 2020, 45(2):233-241. ] | |
[31] | 邓铭江. 天山北坡经济带“三生空间”发展格局与智能水网体系建设[J]. 干旱区地理, 2020, 43(5):1155-1168. |
[ Deng Mingjiang. Development pattern of production-living-ecological spaces and construction of a smart water network system for the economic belt on the north slope of the Tianshan Mountains[J]. Arid Land Geography, 2020, 43(5):1155-1168. ] | |
[32] | 韩会然, 杨成凤, 宋金平. 北京市土地利用变化特征及驱动机制[J]. 经济地理, 2015(5):148-154. |
[ Han Huiran, Yang Chengfeng, Song Jinping. The spatial-temporal characteristic of land use change in Beijing and its driving mechanism[J]. Economic Geography, 2015(5):148-154. ] | |
[33] | 严彩虹, 周龙, 唐震, 等. 莫索湾垦区冬枣大棚温度特征变化及日最低气温预报研究[J]. 浙江农业科学, 2018, 59(3):445-448. |
[ Yan Caihong, Zhou Long, Tang Zhen, et al. Study on temperature characteristic change and daily minimum temperature forecast of dongzao in Mosuowan reclamation area[J]. Journal of Zhejiang Agricultural Sciences, 2018, 59(3):445-448. ] | |
[34] | 陈曦, 常存, 包安明, 等. 改革开放40 a来新疆土地覆被变化的空间格局与特征[J]. 干旱区地理, 2020, 43(1):1-11. |
[ Chen Xi, Chang Cun, Bao Anming, et al. Spatial pattern and characteristics of land cover change in Xinjiang since past 40 years of the economic reform and opening up[J]. Arid Land Geography, 2020, 43(1):1-11. ] | |
[35] | 郭飞, 陈万山, 吴雪勤, 等. 新疆生产建设兵团第八师石河子市统计年鉴—2019[M]. 北京: 中国统计出版社, 2019: 49-52. |
[ Guo Fei, Chen Wanshan, Wu Xueqin, et al. Statistical yearbook of Division 8 of the Xinjiang Production and Construction Corps: 2019[M]. Beijing: China Statistical Publishing House, 2019: 49-52. ] |
[1] | LUO Rongji, WANG Hongtao, WANG Cheng. Ecological quality evaluation of Gulang County in Gansu Province based on improved remote sensing ecological index [J]. Arid Land Geography, 2023, 46(4): 539-549. |
[2] |
LU Wen-lu, LIU Zhi-feng, HE Chun-yang, XIA Pei.
A new method for detecting urban construction land based on Sentinel-1A synthetic aperture radar data and fully convolutional network [J]. Arid Land Geography, 2020, 43(3): 750-760. |
[3] | LI Liang-jun,WANG Xu-hong,Miao Dan,SHEN Yi. Coupling relationship between remote sensing image information capacity and a variety of vegetation index [J]. , 2014, 37(2): 342-348. |
[4] | XU Ya-ping,WANG Xin-yuan,WANG Chang-lin. Dynamic change analysis of Dunhuang Oasis based on long time Landsat image series [J]. , 2013, 36(5): 938-945. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 706
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 500
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
|