Arid Land Geography ›› 2023, Vol. 46 ›› Issue (7): 1176-1195.doi: 10.12118/j.issn.1000-6060.2023.258
• Regional Development • Previous Articles Next Articles
GU Chaolin1(),SU Hefang1,GU Jiang2,GAO Zhe3,CHEN Lelin1,GUO Li3
Received:
2023-06-02
Revised:
2023-06-28
Online:
2023-07-25
Published:
2023-08-03
GU Chaolin, SU Hefang, GU Jiang, GAO Zhe, CHEN Lelin, GUO Li. On the new era of earth science[J].Arid Land Geography, 2023, 46(7): 1176-1195.
Tab. 1
Climate change and its social response during the recent Little Ice Age in China"
年份 | 气候变化 | 社会响应 | ||||
---|---|---|---|---|---|---|
气温 | 自然灾害 | 社会动乱 | 公共政策 | 人口变化/人 | ||
1450—1750年 | 长江结冰1月。洞庭湖冰厚1尺(约33.3 cm)。浙江省河面结冰。 | - | - | - | 6.0×107 | |
明正统元年—嘉靖45年(1436—1566年) | - | - | - | 解除禁海令,玉米、土豆、花生、甘薯、向日葵、辣椒、四季豆等高产农作物从菲律宾传入。 | 8.2×107 | |
明景泰4—5年(1453—1454年) | 山东省“大雪数尺”。 | - | 人畜多冻死 | - | - | |
明隆庆3年(1569年)农历十二月 | 广东省佛山市南海区大雪,“林木皆冰”。 | - | - | - | - | |
万历—崇祯(1573—1641年) | - | 旱灾持续时间之长,范围之广,历史罕见。特别黄河流域几乎年年旱灾。 | 旱灾之后出现瘟疫。山西省晋中市太谷区、忻州市、保德县发生瘟疫,大同“瘟疫大作,十室九空”;河南省、河北省等地皆发生瘟疫。陕西省、山东省等地也爆发瘟疫。 | 农产品种增加,粮食产量增加。 | 2.0×108 | |
万历46年十二月(1618年) | 广州市鹅毛大雪,从化区“山谷之中,峰尽壁立,林皆琼挺”。 | - | - | - | - | |
万历48年十月(1620年) | 山东省大雪,厚达一尺许。 | - | 大量鸟兽因食物匮乏饿死。 | - | - | |
崇祯元年—17年(1628—1644年) | - | 河北省大旱,“赤地千里”;河南省出现9次旱灾。黄河断流。梁山泊、安山湖干涸。 | - | - | - | |
崇祯12—15年(1639—1642年) | - | 长江流域旱灾蔓延。浙江省连年旱灾、蝗灾和瘟疫。 | 农作物歉收 | - | 7.0×107 | |
康熙—乾隆年间(1662—1796年) | - | - | - | 康熙年间取消新生人口赋税;雍正年间取消人头税,改革户籍制度。中医中药之风盛行,西方医疗技术引进,新生儿死亡率下降,病人治愈率提高。红薯等外来农作物引入,耕种面积扩大。 | 2.0×104~3.0×104 | |
嘉庆元年—鸦片战争(1796—1840年) | - | - | 湖北省、河南省、四川省和陕西省爆发白莲教灾民起义,政府镇压耗国库白银2×108两。 | - | - | |
道光30年(1850年) | 小冰期结束 | - | - | - | 4.3×108 | |
1900年 | - | - | 爆发太平天国运动 | - | 3.3×104 |
Tab. 2
Global urbanization level from 1800 to 2020"
年份 | 世界城市水平/% | 年均增长率/% | 发达国家/% | 发展中国家/% |
---|---|---|---|---|
1800 | 3.00 | - | - | - |
1850 | 6.40 | 0.068 | - | - |
1900 | 13.60 | 0.144 | - | - |
1950 | 28.20 | 0.292 | 53.8 | 17.0 |
1960 | 33.57 | 0.537 | 60.5 | 22.2 |
1970 | 36.53 | 0.296 | 66.6 | 25.4 |
1975 | 37.65 | 0.224 | - | - |
1980 | 39.28 | 0.326 | 70.2 | 29.2 |
1985 | 41.12 | 0.368 | - | - |
1990 | 42.92 | 0.360 | 72.5 | 33.6 |
1995 | 44.70 | 0.356 | - | - |
2000 | 46.60 | 0.380 | 74.4 | 39.3 |
2005 | 48.96 | 0.472 | - | - |
2010 | 51.45 | 0.498 | 76.0 | 46.2 |
2015 | 53.84 | 0.478 | - | - |
2020 | 57.40 | 0.712 | 77.2 | 53.1 |
Tab. 3
Changes in near surface temperature of major cities in China from 1979 to 2018"
城市 | 年平均气温/℃ | 1979—2018年 | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1979年 | 1980年 | 1985年 | 1990年 | 1995年 | 2000年 | 2005年 | 2010年 | 2015年 | 2018年 | 年气温差/℃ | 年平均气温/℃ | 年最高气温/℃ | 年最低气温/℃ | ||
哈尔滨市 | 4.71 | 3.10 | 3.40 | 5.53 | 5.38 | 4.67 | 4.75 | 4.52 | 5.53 | 5.11 | 0.40 | 4.87 | 12.14(2007年) | -1.89(1980年) | |
长春市 | 5.65 | 4.56 | 4.94 | 7.00 | 6.62 | 5.74 | 5.64 | 5.24 | 7.20 | 6.91 | 1.26 | 6.21 | 12.95(2007年) | -0.37(1980年) | |
沈阳市 | 8.57 | 7.70 | 7.97 | 8.47 | 8.58 | 8.32 | 8.06 | 7.30 | 8.99 | 8.82 | 0.25 | 8.52 | 16.15(2014年) | 1.16(2009年) | |
广州市 | 21.78 | 22.18 | 21.58 | 22.65 | 22.26 | 22.60 | 22.90 | 22.71 | 22.75 | 22.49 | 0.71 | 22.41 | 27.91(2007年) | 10.64(1988年) | |
乌鲁木齐市 | 5.40 | 5.80 | 5.34 | 6.94 | 7.07 | 6.51 | 6.98 | 6.77 | 7.75 | 6.30 | 0.90 | 6.70 | 14.51(1997年) | 0.07(1988年) | |
上海市 | 15.91 | 15.00 | 15.75 | 16.92 | 16.47 | 17.17 | 17.05 | 17.21 | 17.13 | 18.84 | 2.93 | 16.75 | 21.94(2007年) | 7.26(1988年) | |
青岛市 | 13.25 | 12.25 | 12.34 | 13.57 | 13.42 | 13.67 | 13.27 | 13.26 | 14.17 | 13.95 | 0.70 | 13.45 | 17.96(2017年) | 5.93(1988年) | |
大连市 | 11.51 | 10.63 | 10.31 | 11.84 | 12.03 | 11.38 | 10.83 | 10.35 | 12.13 | 12.32 | 0.81 | 11.61 | 16.61(2014年) | 4.66(1987年) | |
合肥市 | 16.03 | 14.94 | 15.27 | 16.37 | 16.32 | 16.70 | 16.14 | 16.45 | 16.71 | 17.09 | 2.15 | 16.26 | 22.23(2017年) | 6.87(1988年) | |
武汉市 | 16.84 | 16.00 | 16.16 | 17.10 | 17.29 | 17.61 | 17.73 | 16.79 | 17.25 | 17.74 | 0.90 | 17.12 | 22.90(2013年) | 7.40(1988年) | |
西安市 | 13.70 | 13.07 | 13.09 | 13.63 | 14.33 | 14.03 | 14.02 | 14.22 | 13.69 | 15.28 | 1.58 | 13.93 | 21.97(2013年) | 5.28(1988年) | |
北京市 | 10.94 | 10.92 | 11.45 | 12.60 | 13.17 | 12.55 | 12.81 | 12.22 | 13.30 | 13.19 | 2.25 | 12.69 | 19.66(2017年) | 4.39(1987年) | |
兰州市 | 7.95 | 8.32 | 8.00 | 8.95 | 8.50 | 9.57 | 8.41 | 8.51 | 9.31 | 8.94 | 0.99 | 8.80 | 17.08(2015年) | 0.77(1984年) |
Tab. 5
Urbanization level, groundwater level, and land subsidence in the Suzhou-Wuxi-Changzhou region"
年份 | 城市化水平/% | 地下水位 | 地面沉降 |
---|---|---|---|
1949 | 12.0 | -2~-3 m | - |
1960s | 15.0 | 年均下降1~2 m | - |
1970s | 16.0 | 苏州市、无锡市、常州市分别下降到-10.0 m、-29.0 m和-12.8 m | 分别出现50 km2以上的地面沉降区 |
1976 | 15.0 | 苏州市、无锡市、常州市分别下降到-55.0 m、-59.0 m和-58.0 m | 地下水位-15 m等值线面积达到了1500 km2 |
1980s | 20.0 | - | 沿沪宁线宽30 km,长125 km,面积达5400 km2 |
1990s | 25.0 | 苏州市、无锡市、常州市分别降到-66.32 m、-79.47 m、-78.21 m | 最大沉降速率一度达到120 mm·a-1,苏州市区最大累计地面下沉降超过1.6 m,无锡市区和常州市区超过1.2 m |
2000 | 57.1 | 禁采地下水政策 | - |
2006 | 65.1 | 苏州市、无锡市、常州市分别下降到-66.4 m、-77.9 m和-86.2 m | 地下水漏斗面积约5400 km2 |
2010 | 70.6 | - | - |
2015 | 74.9 | 累计完成封井7819眼,每年累计压采地下水开采量4.1×108 m3 | 沉降速率控制在每年7 mm以内 |
2018 | 76.1 | - | - |
2019 | 77.0 | 回升至-40 m | 地下水漏斗区已全部消失 |
2020 | 81.7 | - | - |
2021 | 81.9 | - | - |
[1] | 林肯·佩恩. 海洋与文明[M]. 天津: 天津人民出版社, 2017. |
[Lincoln Paine. The sea and civilization: A maritime history of the world[M]. Tianjin: Tianjin People’s Publishing House, 2017.] | |
[2] | Ting S. Studies of the Scottish shoreline[D]. Glasgow: University of Glasgow, 1937. |
[3] | Lolck M. Klima, kold krig og iskerner[M]. Aarhus: Steno Instituttet, 2004. |
[4] | Davis M B. Interglacial pollen spectra from Greenland[C]// Danmarks Geologiske Undersoegelse. II Raekke (Studies in vegetational history in honour of Knud Jessen). Copenhagen:Geological Survey of Denmark (DGU), 1954: 65-72. |
[5] |
Dansgaard W, Johnsen S J, Møller J, et al. One thousand centuries of climatic record from Camp Century on the Greenland ice sheet[J]. Science, 1969, 166(3903): 377-381.
pmid: 17796550 |
[6] | Malone T F, Roederer J G. Global change[M]. Cambridge: Cambridge University Press, 1985. |
[7] |
Rockström J, Steffen W, Noone K, et al. Planetary boundaries: Exploring the safe operating space for humanity[J]. Ecology and Society, 2009, 14(2): 32, doi: 10.5751/ES-03180-140232.
doi: 10.5751/ES-03180-140232 |
[8] | Crutzen P J, Stoermer E F. The “Anthropocene”[J]. Global Change Newsletter, 2000, 41: 17-18. |
[9] |
Crutzen P J. Geology of mankind[J]. Nature, 2002, 415: 23, doi: 10.1038/415023a.
doi: 10.1038/415023a |
[10] |
Rockström J, Steffen W, Noone K, et al. A safe operating space for humanity[J]. Nature, 2009, 461(7263): 472-475.
doi: 10.1038/461472a |
[11] |
Head L. Contingencies of the Anthropocene: Lessons from the “Neolithic”[J]. The Anthropocene Review, 2014, 1(2): 113-125.
doi: 10.1177/2053019614529745 |
[12] | 邱振威, 庄丽娜, 饶慧芸, 等. 8000多年前淮河流域的水稻栽培与驯化——来自江苏韩井遗址的证据[J]. 中国科学: 地球科学, 2022, 52(6): 1054-1064. |
[Qiu Zhenwei, Zhuang Lina, Rao Huiyun, et al. Excavation at Hanjing Site Yields: Evidence of early rice cultivation in the Huai River more than 8000 years ago[J]. Scientia Sinica (Terrae), 2022, 52(6): 1054-1064.] | |
[13] | Childe V C. Man makes himself[M]. London: Watts & Co., 1936. |
[14] |
Ruddiman W F. The Anthropogenic greenhouse era began thousands of years ago[J]. Climatic Change, 2003, 61(3): 261-293.
doi: 10.1023/B:CLIM.0000004577.17928.fa |
[15] |
Jenny J P, Koirala S, Gregory-Eaves I, et al. Human and climate global-scale imprint on sediment transfer during the Holocene[J]. Proceedings of the National Academy of Sciences, 2019, 116(46): 22972-22976.
doi: 10.1073/pnas.1908179116 |
[16] |
Certini G, Scalenghe R. Anthropogenic soils are the golden spikes for the Anthropocene[J]. The Holocene, 2011, 21(8): 1269-1274.
doi: 10.1177/0959683611408454 |
[17] |
Stephens L, Fuller D, Boivin N, et al. Archaeological assessment reveals earth’s early transformation through land use[J]. Science, 2019, 365(6456): 897-902.
doi: 10.1126/science.aax1192 pmid: 31467217 |
[18] |
Sullivan A P, Bird D W, Perry G H. Human behaviour as a long-term ecological driver of non-human evolution[J]. Nature Ecology & Evolution, 2017, 1: 0065, doi: 10.1038/s41559-016-0065.
doi: 10.1038/s41559-016-0065 |
[19] | 竺可桢. 中国近五千年来气候变迁的初步研究[J]. 考古学报, 1972, 17(1): 15-38. |
[Zhu Kezhen. Preliminary study on climate change in China in recent 5 thousand years[J]. Acta Archaeologica Sinica, 1972, 17(1): 15-38.] | |
[20] | Mintz S W. Sweetness and power: The place of sugar in modern history[M]. New York: Penguin, 1986. |
[21] |
Haraway D, Ishikawa N, Gilbert S F, et al. Anthropologists are talking: About the Anthropocene[J]. Ethnos, 2016, 81(3): 535-564.
doi: 10.1080/00141844.2015.1105838 |
[22] |
Lewis S L, Maslin M A. Defining the Anthropocene[J]. Nature, 2015, 519(7542): 171-180.
doi: 10.1038/nature14258 |
[23] | Musson A E. The growth of British industry[M]. London: Batsford, 1978. |
[24] |
Steffen W, Crutzen P, McNeill J R. The Anthropocene: Are humans now overwhelming the great forces of nature?[J]. AMBIO: A Journal of the Human Environment, 2007, 36(8): 614-621.
doi: 10.1579/0044-7447(2007)36[614:TAAHNO]2.0.CO;2 |
[25] | Ellis E C, Goldewijk K K, Siebert S, et al. Anthropogenic transformation of the biomes, 1700 to 2000[J]. Global Ecology and Biogeography, 2010, 19(5): 589-606. |
[26] |
Castree N. Changing the Anthropo(s)cene: Geographers, global environmental change and the politics of knowledge[J]. Dialogues in Human Geography, 2015, 5(3): 301-316.
doi: 10.1177/2043820615613216 |
[27] |
Millar S W, Mitchell D. The tight dialectic: The Anthropocene and the capitalist production of nature[J]. Antipode, 2017, 49(Suppl. 1): 75-93.
doi: 10.1111/anti.v49.S1 |
[28] |
Sexton A E. Eating for the post-Anthropocene: Alternative proteins and the biopolitics of edibility[J]. Transactions of the Institute of British Geographers, 2018, 43(4): 586-600.
doi: 10.1111/tran.2018.43.issue-4 |
[29] |
Gibson-Graham J K. Reading for difference in the archives of tropical geography: Imagining an (other) economic geography for beyond the Anthropocene[J]. Antipode, 2020, 52(1): 12-35.
doi: 10.1111/anti.v52.1 |
[30] |
Ellis E, Maslin M, Boivin N, et al. Involve social scientists in defining the Anthropocene[J]. Nature, 2016, 540(7632): 192-193.
doi: 10.1038/540192a |
[31] |
Steffen W, Grinevald J, Crutzen P, et al. The Anthropocene: Conceptual and historical perspectives[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2011, 369(1938): 842-867.
doi: 10.1098/rsta.2010.0327 |
[32] | Malm A. Fossil capital: The rise of steam power and the roots of global warming[M]. New York: Verso, 2016. |
[33] |
Brito-Morales I, García Molinos J, Schoeman D S, et al. Climate velocity can inform conservation in a warming world[J]. Trends in Ecology & Evolution, 2018, 33(6): 441-457.
doi: 10.1016/j.tree.2018.03.009 |
[34] |
Azad N, Behmanesh J, Rezaverdinejad V, et al. An analysis of optimal fertigation implications in different soils on reducing environmental impacts of agricultural nitrate leaching[J]. Scientific Report, 2020, 10: 7797, doi: 10.1038/s41598-020-64856-x.
doi: 10.1038/s41598-020-64856-x |
[35] |
Zipper S C, Jaramillo F, Wang-Erlandsson L, et al. Integrating the water planetary boundary with water management from local to global scales[J]. Earth’s Future, 2020, 8(2): e2019EF001377, doi: 10.1029/2019EF001377.
doi: 10.1029/2019EF001377 |
[36] |
Zhang Q, Wiedmann T, Fang K, et al. Bridging planetary boundaries and spatial heterogeneity in a hybrid approach: A focus on Chinese provinces and industries[J]. Science of the Total Environment, 2022, 804: 150179, doi: 10.1016/j.scitotenv.2021.150179.
doi: 10.1016/j.scitotenv.2021.150179 |
[37] | McNeill J R, Engelke P. The great acceleration: An environmental history of the Anthropocene since 1945[M]. Cambridge: Harvard University Press, 2014. |
[38] |
Zalasiewicz J, Waters C N, Williams M, et al. When did the Anthropocene begin? A mid-twentieth century boundary level is stratigraphically optimal[J]. Quaternary International, 2015, 383: 196-203.
doi: 10.1016/j.quaint.2014.11.045 |
[39] | Carrington D. The Anthropocene epoch: Scientists declare dawn of human-influenced age[N]. The Guardian, 2016-08-29(16). |
[40] |
Steffen W, Broadgate W, Deutsch L, et al. The trajectory of the Anthropocene: The great acceleration[J]. The Anthropocene Review, 2015, 2(1): 81-98.
doi: 10.1177/2053019614564785 |
[41] | Cochrane W W. The development of American agriculture: A historical analysis[M]. 2nd ed. Minneapolis: University of Minnesota, 1993. |
[42] |
Mekonnen M M, Hoekstra A Y. Water footprint benchmarks for crop production: A first global assessment[J]. Ecological Indicators, 2014, 46: 214-223.
doi: 10.1016/j.ecolind.2014.06.013 |
[43] |
Foley J A, Defries R, Asner G P, et al. Global consequences of land use[J]. Science, 2005, 309(5734): 570-574.
doi: 10.1126/science.1111772 pmid: 16040698 |
[44] |
Gu C. Urbanization: Positive and negative effects[J]. Science Bulletin, 2019, 64(5): 281-283.
doi: 10.1016/j.scib.2019.01.023 pmid: 36659587 |
[45] | Gu C. Urbanization[C]// Kobayashi A. International Encyclopedia of Human Geography. 2nd ed.ed. Amsterdam: Elsevier, 2020: 141-153. |
[46] |
Kraas F. Megacities and global change: Key priorities[J]. The Geographical Journal, 2007, 173(1): 79-82.
doi: 10.1111/geoj.2007.173.issue-1 |
[47] |
Dhakal S. Urban energy use and carbon emissions from cities in China and policy implications[J]. Energy Policy, 2009, 37(11): 4208-4219.
doi: 10.1016/j.enpol.2009.05.020 |
[48] | Seto K C, Dhakal S, Bigio A, et al. Human settlements, infrastructure and spatial planning[C]// Edenhofer O, Pichs-Madruga R, Sokona Y, et al. Climate Change: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2014. |
[49] | 崔功豪, 王本炎, 查彦玉, 等. 城市地理学[M]. 南京: 江苏教育出版社, 1992: 82. |
[Cui Gonghao, Wang Benyan, Zha Yanyu, et al. Urban geography[M]. Nanjing: Jiangsu Education Press, 1992: 82.] | |
[50] | Millennium Ecosystem Assessment. Ecosystems and human well-being: Wetlands and water[R]. Washington: World Resources Institute, 2005. |
[51] |
Crippa M, Solazzo E, Guizzardi D, et al. Food systems are responsible for a third of global Anthropogenic GHG emissions[J]. Nature Food, 2021, 2(3): 198-209.
doi: 10.1038/s43016-021-00225-9 pmid: 37117443 |
[52] | Stocker T F, Qin D, Plattner G-K, et al. Climate Change 2013: The physical science basis[C]// Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2013. |
[53] |
Fang S, Mao K. Dataset of daily near-surface air temperature in China from 1979 to 2018[J]. Earth System Science Data, 2022, 14(3): 1413-1432.
doi: 10.5194/essd-14-1413-2022 |
[54] | Emery K O. Relative sea levels from tide gauge records[J]. National Academy of Sciences Prodeedings, 1980, 77: 6968-6922. |
[55] | Aubrey D G, Emery K O. Relative sea levels of Japan from tide-gauge records[J]. Geological Society of America Bulletin, 1986, 94: 194-205. |
[56] | 国家海洋局. 1989年中国海洋局公报[R]. 北京: 国家海洋局, 1990. |
[State Oceanic Administration. Bulletin of the State Oceanic Administration 1989[R]. Beijing: State Oceanic Administration, 1990.] | |
[57] | 曾昭璇, 刘南威, 胡男, 等. 珠江口海平面最近25年上升趋势研究及其影响[J]. 热带地貌, 1991, 12(增刊1): 1-18. |
[Zeng Zhaoxuan, Liu Nanwei, Hu Nan, et al. Studies on tendency and impact of sea level rise in Zhujiang River estuary[J]. Tropical Geomorphology, 1991, 12(Suppl. 1): 1-18.] | |
[58] | 王志豪, 刘天珍. 论我国海岸带的三个基准面[J]. 海洋科技资料, 1981, 10(5): 1-22. |
[Wang Zhihao, Liu Tianzhen. On the three datums of China’s coastal zone[J]. Marine Science Bulletin, 1981, 10(5): 1-22.] | |
[59] | 李平日. 珠江三角洲全新世海进看未来海面上升的可能影响及其对策[C]// 珠江三角洲环境与空间发展. 北京: 学术期刊出版社, 1990: 1-8. |
[Li Pingri. Holocene transgression in the Pearl River Delta in view of the possible impact of future sea level rise and its countermeasures[C]// Pearl River Delta Environment and Spatial Development. Beijing: Academic Journal Press, 1990: 1-8.] | |
[60] |
Moran D D, Wackernagel M, Kitzes J A, et al. Measuring sustainable development: Nation by nation[J]. Ecological Economics, 2008, 64(3): 470-474.
doi: 10.1016/j.ecolecon.2007.08.017 |
[61] |
Steinfeld H, Gerber P. Livestock production and the global environment: Consume less or produce better?[J]. Proceedings of the National Academy of Sciences, 2010, 107(43): 18237-18238.
doi: 10.1073/pnas.1012541107 |
[62] |
Grimm N B, Faeth S H, Golubiewski N E, et al. Global change and the ecology of cities[J]. Science, 2008, 319(5864): 756-760.
doi: 10.1126/science.1150195 pmid: 18258902 |
[63] |
García-Valdés R, Bugmann H, Morin X. Climate change-driven extinctions of tree species affect forest functioning more than random extinctions[J]. Diversity and Distributions, 2018, 24(7): 906-918.
doi: 10.1111/ddi.2018.24.issue-7 |
[64] | 刘培林. 世界城市化和城市发展的若干新趋势新理念[J]. 理论学刊, 2012, 27(12): 54-57. |
[Liu Peilin. Some new trends and new ideas of urbanization and urban development in the world[J]. Theory Journal, 2012, 27(12): 54-57.] | |
[65] |
顾朝林, 陈田, 史培军. 1991年苏皖城市洪涝灾害成因分析[J]. 地理学报, 1992, 47(4): 289-301.
doi: 10.11821/xb199204001 |
[Gu Chaolin, Chen Tian, Shi Peijun. Analysis of formation factors for the Jiangsu-Anhui urban floods and water logging in 1991[J]. Acta Geographica Sinica, 1992, 47(4): 289-301.]
doi: 10.11821/xb199204001 |
|
[66] | 沈正平. 迈向21世纪的长江三角洲地区环境保护[C]// 张颢瀚, 朱敏彦, 曾骅. 21世纪初长江三角洲区域发展战略研究. 南京: 南京大学出版社, 2000: 268-269. |
[Shen Zhengping. Environmental protection in the Yangtze River Delta Region towards the 21st century[C]// Zhang Haohan, Zhu Minyan, Zeng Hua. A study of Regional Development Strategies in the Yangtze River Delta at the Beginning of the 21st Century. Nanjing: Nanjing University Press, 2000: 268-269.] | |
[67] | 陈梦熊. 关于海平面上升与控制城市地面沉降[C]// 中国科学院地学部. 海平面上升对中国三角洲地区的影响及对策. 北京: 科学出版社, 1994: 267-278. |
[Chen Mengxiong. On sea level rise and control of urban ground subsidence[C]// Department of Geosciences, Chinese Academy of Sciences. Impacts of Sea Level Rise on the Delta Region of China and Countermeasures. Beijing: Science Press, 1994: 267-268.] | |
[68] |
Gu C, Hu L, Zhang X, et al. Climate change and urbanization in the Yangtze River Delta[J]. Habitat International, 2011, 35(4): 544-552.
doi: 10.1016/j.habitatint.2011.03.002 |
[69] |
Fang C, Ren Y. Analysis of emergy-based metabolic efficiency and environmental pressure on the local coupling and telecoupling between urbanization and the eco-environment in the Beijing-Tianjin-Hebei urban agglomeration[J]. Science China Earth Sciences, 2017, 60(6): 1083-1097.
doi: 10.1007/s11430-016-9038-6 |
[70] | 秦伯强, 吴庆农, 高俊峰, 等. 太湖地区的水资源与水环境——问题、原因与管理[J]. 自然资源学报, 2002, 17(2): 221-228. |
[Qin Boqiang, Wu Qingnong, Gao Junfeng, et al. Water environmental issues in Taihu Lake of China: Problems, causes and management[J]. Journal of Natural Resources, 2002, 17(2): 221-228.] | |
[71] | Quammen D. Spillover: Animal infections and the next human pandemic[M]. New York: W. W. Norton & Company, 2012. |
[72] |
Simu G M, Atchana J, Soica C M, et al. Pharmaceutical mixtures: Still a concern for human and environmental health[J]. Current Medicinal Chemistry, 2020, 27(1): 121-153.
doi: 10.2174/0929867325666181108094222 pmid: 30406736 |
[73] | Hekstra G P. Will climatic changes flood the Netherland?[J]. Ambic, 1986, 15(6): 316-326. |
[74] | Milliman J D, Broadus J M, Gable F. Environmental and economic implications of rising sea level and subsiding deltas: The Nile and Bengal examples[J]. Ambio, 1989, 18(6): 340-345. |
[75] | Ren M. Sea-level rise trends and rise estimate in 2030 in the Yellow River Delta[J]. Acta Geographica Sinica, 1993, 48(5): 385-393. |
[76] | 缪启龙. 气候变化对长江三角洲海岸带的可能影响[J]. 自然灾害学报, 1995, 4(2): 79-85. |
[Miao Qilong. The possible impact of climate change on the delta coast of Yangtze River[J]. Journal of Natural Disasters, 1995, 4(2): 79-85.] | |
[77] | 施雅风, 朱季文, 谢志仁, 等. 长江三角洲及毗连地区海平面上升影响预测与防治对策[J]. 中国科学: 地球科学, 2000, 30(3): 225-232. |
[Shi Yafeng, Zhu Jiwen, Xie Zhiren, et al. Sea level rise influence forecast and prevention and cure countermeasure in the Yangtze River Delta and near region[J]. Scientia Sinica (Terrae), 2000, 30(3): 225-232.] | |
[78] | 顾朝林, 张晓明, 王小丹. 气候变化·城市化·长江三角洲[J]. 长江流域资源与环境, 2011, 20(1): 1-8. |
[Gu Chaolin, Zhang Xiaoming, Wang Xiaodan. Climate change, urbanization and the Yangtze River Delta[J]. Resource Environment Yangtze Basin, 2011, 20(1): 1-8.] | |
[79] | 孙清, 张玉淑, 胡恩, 等. 海平面上升对长江三角洲地区的影响评价研究[J]. 长江流域资源与环境, 1997, 5(1): 59-65. |
[Sun Qing, Zhang Yushu, Hu En, et al. Potential impacts of sea level rise on the economy and environment in the Yangtze River Delta and the countermeasures thereof[J]. Resources and Environment in the Yangtze Valley, 1997, 5(1): 59-65.] | |
[80] | 刘杜娟, 叶银灿. 长江三角洲地区的相对海平面上升与地面沉降[J]. 地质灾害与环境保护, 2005, 16(4): 400-404. |
[Liu Dujuan, Ye Yincan. Relative sea surface rise and land subsidence in Changjiang Delta area[J]. Journal of Geological Hazards and Environment Preservation, 2005, 16(4): 400-404.] | |
[81] |
Courtillot V, Olson P. Mantle plumes link magnetic superchrons to phanerozoic mass depletion events[J]. Earth and Planetary Science Letters, 2007, 260(3-4): 495-504.
doi: 10.1016/j.epsl.2007.06.003 |
[82] | Vernadsky V I. The chemical structure of the earth’s biosphere and its surroundings[M]. Moscow: Nauka, 1987. |
[83] |
Brook B W, Ellis E C, Perring M P, et al. Does the terrestrial biosphere have planetary tipping points?[J]. Trends in Ecology & Evolution, 2013, 28(7): 396-401.
doi: 10.1016/j.tree.2013.01.016 |
[84] | Raworth K. A safe and just space for humanity: Can we live within the doughnut?[EB/OL]. [2012-02-13]. https://www.oxfam.org/en/research/safe-and-just-space-humanity. |
[85] | 朱日祥, 侯增谦, 郭正堂, 等. 宜居地球的过去、现在与未来——地球科学发展战略概要[J]. 科学通报, 2021, 66(35): 4485-4490. |
[Zhu Rixiang, Hou Zengqian, Guo Zhengtang, et al. Summary of “the past, present and future of the habitable earth: Development strategy of earth science”[J]. Chinese Science Bulletin, 2021, 66(35): 4485-4490.] | |
[86] | 高扬, 王朔月, 陆瑶, 等. 区域陆-水-气碳收支与碳平衡关键过程对地球系统碳中和的意义[J]. 中国科学: 地球科学, 2022, 52(5): 832-841. |
[Gao Yang, Wang Shuoyue, Lu Yao, et al. Carbon budget and balance critical processes of the regional land-water-air interface: Indicating the earth system’s carbon neutrality[J]. Scientia Sinica (Terrae), 2022, 52(5): 832-841.] | |
[87] |
Glikson A. Fire and human evolution: The deep-time blueprints of the Anthropocene[J]. Anthropocene, 2013, 3: 89-92.
doi: 10.1016/j.ancene.2014.02.002 |
[88] | Davis H, Todd Z. On the importance of a date, or, decolonizing the Anthropocene[J]. ACME: An International Journal for Critical Geographies, 2017, 16(4): 761-780. |
[89] | Zalasiewicz J, Williams M, Smith A, et al. Are we now living in the Anthropocene?[J]. GSA Today, 2008, 18(2): 4-8. |
[90] | Palsson G, Szerszynski B, Sörlin S, et al. Reconceptualizing the “Anthropos” in the Anthropocene: Integrating the social sciences and humanities in global environmental change research[J]. Environmental Science & Policy, 2013, 28: 3-13. |
[91] |
Ogden L, Heynen N, Oslender U, et al. Global assemblages, resilience, and earth stewardship in the Anthropocene[J]. Frontiers in Ecology and the Environment, 2013, 11(7): 341-347.
doi: 10.1890/120327 |
[92] | Ruddiman W F. Earth’s climate: Past and future[M]. New York: W.H. Freeman & Company, 2001. |
[93] |
Ruddiman W F, Ellis E C, Kaplan J O, et al. Defining the epoch we live in[J]. Science, 2015, 348(6230): 38-39.
doi: 10.1126/science.aaa7297 pmid: 25838365 |
[94] | Humboldt A. Cosmos: A sketch of a physical description of the universe[M]. London: Henry G. Bohn, 1849. |
[95] | Marsh G P. Man and nature: Or, physical geography as modified by human action[M]. Seattle: University of Washington Press, 2003. |
[96] | Reclus E. The feeling for nature in modern society[C]// Clark J, Martin C. Anarchy, Geography, Modernity:Selected Writings of Elisée Reclus. Oakland: PM Press, 2013: 103-112. |
[97] | Urban M A. In defense of crappy landscapes[C]// Lave R, Biermann C, Lane S N. The Palgrave Handbook of Critical Physical Geography. Cham: Palgrave Macmillan, 2018: 49-66. |
[98] |
Larsen T B, Harrington J. Geographic thought and the Anthropocene: What geographers have said and have to say[J]. Annals of the American Association of Geographers, 2021, 111(3): 729-741.
doi: 10.1080/24694452.2020.1796575 |
[99] |
Stallins J A. The Anthropocene: The one, the many, and the topological[J]. Annals of the American Association of Geographers, 2021, 111(3): 638-646.
doi: 10.1080/24694452.2020.1760781 |
[100] |
Zeeman E C. Catastrophe theory[J]. Scientific American, 1976, 234(4): 65-83.
doi: 10.1038/scientificamerican0476-65 |
[101] | Graf W L. Catastrophe theory as a model for change in fluvial systems[C]// Rhodes D D, Williams E J. Adjustments of the Fluvial System. London: Allen and Unwin, 1979: 13-32. |
[102] |
Thorn C E, Welford M R. The equilibrium concept in geomorphology[J]. Annals of the Association of American Geographers, 1994, 84(4): 666-696.
doi: 10.1111/j.1467-8306.1994.tb01882.x |
[103] |
Scheffer M, Carpenter S, Foley J A, et al. Catastrophic shifts in ecosystems[J]. Nature, 2001, 413(6856): 591-596.
doi: 10.1038/35098000 |
[104] |
Barnosky A D, Hadly E A, Bascompte J, et al. Approaching a state shift in earth’s biosphere[J]. Nature, 2012, 486(7401): 52-58.
doi: 10.1038/nature11018 |
[105] |
Dakos V, Carpenter S R, van Nes E H, et al. Resilience indicators: Prospects and limitations for early warnings of regime shifts[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370(1659): 20130263, doi: 10.1098/rstb.2013.0263.
doi: 10.1098/rstb.2013.0263 |
[106] |
Davis J, Moulton A A, van Sant L, et al. Anthropocene, Capitalocene, Plantationocene? A manifesto for ecological justice in an age of global crises[J]. Geography Compass, 2019, 13(5): e12438, doi: 10.1111/gec3.12438.
doi: 10.1111/gec3.12438 |
[107] | 秦大河, 姚檀栋, 丁永建, 等. 冰冻圈科学体系的建立及其意义[J]. 中国科学院院刊, 2020, 35(4): 394-406. |
[Qin Dahe, Yao Tandong, Ding Yongjian, et al. The establishment and significance of the cryosphere scientific system[J]. Bulletin of Chinese Academy of Sciences, 2020, 35(4): 394-406.] | |
[108] |
Qin D, Ding Y, Xiao C, et al. Cryospheric science: Research framework and disciplinary system[J]. National Science Review, 2018, 5(2): 255-268.
doi: 10.1093/nsr/nwx108 |
[109] |
丁永建, 效存德. 冰冻圈变化及其影响研究的主要科学问题概论[J]. 地球科学进展, 2013, 28(10): 1067-1076.
doi: 10.11867/j.issn.1001-8166.2013.10.1067 |
[Ding Yongjian, Xiao Cunde. Challenges in the study of cryospheric changes and their impacts[J]. Advances in Earth Science, 2013, 28(10): 1067-1076.]
doi: 10.11867/j.issn.1001-8166.2013.10.1067 |
|
[110] |
Vörömarty C J, Sahagian D. Anthropogenic disturbance of the terrestrial water cycle[J]. BioScience, 2000, 50(9): 753-765.
doi: 10.1641/0006-3568(2000)050[0753:ADOTTW]2.0.CO;2 |
[111] | 王浩, 贾仰文, 杨贵羽, 等. 海河流域二元水循环及其伴生过程综合模拟[J]. 科学通报, 2013, 58(12): 1064-1077. |
[Wang Hao, Jia Yangwen, Yang Guiyu, et al. Integrated simulation of the dualistic water cycle and its associated processes in the Haihe River Basin[J]. Chinese Science Bulletin, 2013, 58(12): 1064-1077.] | |
[112] | 秦大庸, 陆垂裕, 刘家宏, 等. 流域“自然-社会”二元水循环理论框架[J]. 科学通报, 2014, 59(增刊1): 419-427. |
[Qin Dayong, Lu Chuiyu, Liu Jiahong, et al. Theoretical framework of dualistic nature-social water cycle[J]. Chinese Science Bulletin, 2014, 59(Suppl.1): 419-427.] | |
[113] |
Biggs T W, Scott C A, Gaur A, et al. Impacts of irrigation and Anthropogenic aerosols on the water balance, heat fluxes, and surface temperature in a river basin[J]. Water Resources Research, 2008, 44(12): W12415, doi: 10.1029/2008WR006847.
doi: 10.1029/2008WR006847 |
[114] | Pielke Sr. R, Beven K, Brasseur G, et al. Climate change: The need to consider human forcings besides greenhouse gases[J]. Eos, Transactions American Geophysical Union, 2009, 90(45): 413. |
[115] |
Sivapalan M, Savenije H H G, Blöschl G. Socio-hydrology: A new science of people and water[J]. Hydrological Processes, 2012, 26(8): 1270-1276.
doi: 10.1002/hyp.8426 |
[116] |
Montanari A, Young G, Savenije H H G, et al. “Panta rhei: Everything flows”: Change in hydrology and society: The IAHs scientific decade 2013—2022[J]. Hydrological Sciences Journal, 2013, 58(6): 1256-1275.
doi: 10.1080/02626667.2013.809088 |
[117] |
Edgeworth M, Ellis E C, Gibbard P, et al. The chronostratigraphic method is unsuitable for determining the start of the Anthropocene[J]. Progress in Physical Geography: Earth and Environment, 2019, 43(3): 334-344.
doi: 10.1177/0309133319831673 |
[118] |
Young K. Biogeography of the Anthropocene: Novel species assemblages[J]. Progress in Physical Geography: Earth and Environment, 2014, 38(5): 664-673.
doi: 10.1177/0309133314540930 |
[119] |
Young K. Biogeography of the Anthropocene: Domestication[J]. Progress in Physical Geography: Earth and Environment, 2016, 40(1): 161-174.
doi: 10.1177/0309133315598724 |
[120] | Bettencourt L M. Introduction to urban science: Evidence and theory of cities as complex systems[M]. Cambridge: MIT Press, 2021. |
[121] |
De Pascale F, Dattilo V. The geoethical semiosis of the Anthropocene: The Peircean triad for a reconceptualization of the relationship between human beings and environment[J]. Annals of the American Association of Geographers, 2020, 111(3): 647-654.
doi: 10.1080/24694452.2020.1843994 |
[1] | XIANG Yanyun, WANG Yi, CHEN Yaning, ZHANG Qifei, ZHANG Yujie. Prediction of future hydrological drought risk in the Yarkant River Basin based on CMIP6 models [J]. Arid Land Geography, 2024, 47(5): 798-809. |
[2] | ZHAO Mingjie, WANG Ninglian, SHI Chenlie, HOU Jingqi. Temporal and spatial variations of lake ice phenology in large lakes of Central Asia from 2000 to 2020 [J]. Arid Land Geography, 2024, 47(4): 561-575. |
[3] | WANG Shuzhi, WEN Deping. Attribution analysis of runoff change in the Datong River Basin, Qinghai-Tibet Plateau [J]. Arid Land Geography, 2024, 47(2): 203-213. |
[4] | CHANG Xuexiang, ZHAO Wenzhi, TIAN Quanyan. Advances in climate change and its impact on the stability of mountain forest ecosystems and hydrological processes in arid regions [J]. Arid Land Geography, 2024, 47(2): 228-236. |
[5] | SUI Lu, YAN Zhiming, LI Kaifang, HE Peien, MA Yingjie, ZHANG Rucui. Prediction of habitat quality in the Ili River Valley under the influence of human activities and climate change [J]. Arid Land Geography, 2024, 47(1): 104-116. |
[6] | TIAN Haowei, CHEN Fulong, LONG Aihua, LIU Jing, HAI Yang. Response and prediction of runoff to climate change in the headwaters of the Bortala River [J]. Arid Land Geography, 2023, 46(9): 1432-1442. |
[7] | AI Liya, WANG Yongfang, GUO Enliang, YIN Shan, GU Xiling. NDVI change and its influencing factors of Daqingshan National Nature Reserve based on GEE [J]. Arid Land Geography, 2023, 46(8): 1279-1290. |
[8] | GAO Xiaoyu, HAO Haichao, ZHANG Xueqi, CHEN Yaning. Responses of vegetation water use efficiency to meteorological factors in arid areas of northwest China: A case of Xinjiang [J]. Arid Land Geography, 2023, 46(7): 1111-1120. |
[9] | CHEN Shujun,XU Guochang,LYU Zhiping,MA Mingyue,LI Hanyu,ZHU Yuyan. Spatiotemporal variations of fractional vegetation cover and its response to climate change and urbanization in China [J]. Arid Land Geography, 2023, 46(5): 742-752. |
[10] | ZOU Yafeng, ZHANG Qian, RAO Yufei, DEND Min, WANG Qi. Evolution of new urbanization of provincial capitals in western China [J]. Arid Land Geography, 2023, 46(4): 636-648. |
[11] | LI Na,WU Yongli,ZHAO Guixiang,QIAN Jinxia,LI Fen,ZHAO Haiying,HAN Pu. Interannual variations of extreme air temperature events and its response to regional warming in Shanxi Province in recent 60 years [J]. Arid Land Geography, 2023, 46(3): 337-348. |
[12] | REN Taotao,LI Shuangshuang,DUAN Keqin,HE Jinping. Spatiotemporal variation characteristics and influencing factors of heat wave and precipitation deficit flash drought in the Loess Plateau [J]. Arid Land Geography, 2023, 46(3): 360-370. |
[13] | JIN Zizhen, QIN Xiang, ZHAO Qiudong, LI Yanzhao, LIU Yushuo, CHEN Jizu, WANG Lihui, WANG Qiang. Characteristics of runoff variation during ablation season in Laohugou watershed of western Qilian Mountains [J]. Arid Land Geography, 2023, 46(2): 178-190. |
[14] | XIA Huaixia, LIANG Hanwei, CHEN Shuang, WANG Qian, WANG Shenmin. Spatiotemporal coupling of landscape-demographic urbanization in Central Asia [J]. Arid Land Geography, 2023, 46(1): 115-126. |
[15] | YUAN Zhihui, YIN Shan, SA Chula, CHI Yongfeng. Effects of urbanization on vegetation phenology in Hohhot City in the recent 20 years [J]. Arid Land Geography, 2022, 45(6): 1890-1898. |
|