Arid Land Geography ›› 2023, Vol. 46 ›› Issue (7): 1176-1195.doi: 10.12118/j.issn.1000-6060.2023.258
• Regional Development • Previous Articles Next Articles
GU Chaolin1(),SU Hefang1,GU Jiang2,GAO Zhe3,CHEN Lelin1,GUO Li3
Received:
2023-06-02
Revised:
2023-06-28
Online:
2023-07-25
Published:
2023-08-03
GU Chaolin, SU Hefang, GU Jiang, GAO Zhe, CHEN Lelin, GUO Li. On the new era of earth science[J].Arid Land Geography, 2023, 46(7): 1176-1195.
Tab. 1
Climate change and its social response during the recent Little Ice Age in China"
年份 | 气候变化 | 社会响应 | ||||
---|---|---|---|---|---|---|
气温 | 自然灾害 | 社会动乱 | 公共政策 | 人口变化/人 | ||
1450—1750年 | 长江结冰1月。洞庭湖冰厚1尺(约33.3 cm)。浙江省河面结冰。 | - | - | - | 6.0×107 | |
明正统元年—嘉靖45年(1436—1566年) | - | - | - | 解除禁海令,玉米、土豆、花生、甘薯、向日葵、辣椒、四季豆等高产农作物从菲律宾传入。 | 8.2×107 | |
明景泰4—5年(1453—1454年) | 山东省“大雪数尺”。 | - | 人畜多冻死 | - | - | |
明隆庆3年(1569年)农历十二月 | 广东省佛山市南海区大雪,“林木皆冰”。 | - | - | - | - | |
万历—崇祯(1573—1641年) | - | 旱灾持续时间之长,范围之广,历史罕见。特别黄河流域几乎年年旱灾。 | 旱灾之后出现瘟疫。山西省晋中市太谷区、忻州市、保德县发生瘟疫,大同“瘟疫大作,十室九空”;河南省、河北省等地皆发生瘟疫。陕西省、山东省等地也爆发瘟疫。 | 农产品种增加,粮食产量增加。 | 2.0×108 | |
万历46年十二月(1618年) | 广州市鹅毛大雪,从化区“山谷之中,峰尽壁立,林皆琼挺”。 | - | - | - | - | |
万历48年十月(1620年) | 山东省大雪,厚达一尺许。 | - | 大量鸟兽因食物匮乏饿死。 | - | - | |
崇祯元年—17年(1628—1644年) | - | 河北省大旱,“赤地千里”;河南省出现9次旱灾。黄河断流。梁山泊、安山湖干涸。 | - | - | - | |
崇祯12—15年(1639—1642年) | - | 长江流域旱灾蔓延。浙江省连年旱灾、蝗灾和瘟疫。 | 农作物歉收 | - | 7.0×107 | |
康熙—乾隆年间(1662—1796年) | - | - | - | 康熙年间取消新生人口赋税;雍正年间取消人头税,改革户籍制度。中医中药之风盛行,西方医疗技术引进,新生儿死亡率下降,病人治愈率提高。红薯等外来农作物引入,耕种面积扩大。 | 2.0×104~3.0×104 | |
嘉庆元年—鸦片战争(1796—1840年) | - | - | 湖北省、河南省、四川省和陕西省爆发白莲教灾民起义,政府镇压耗国库白银2×108两。 | - | - | |
道光30年(1850年) | 小冰期结束 | - | - | - | 4.3×108 | |
1900年 | - | - | 爆发太平天国运动 | - | 3.3×104 |
Tab. 2
Global urbanization level from 1800 to 2020"
年份 | 世界城市水平/% | 年均增长率/% | 发达国家/% | 发展中国家/% |
---|---|---|---|---|
1800 | 3.00 | - | - | - |
1850 | 6.40 | 0.068 | - | - |
1900 | 13.60 | 0.144 | - | - |
1950 | 28.20 | 0.292 | 53.8 | 17.0 |
1960 | 33.57 | 0.537 | 60.5 | 22.2 |
1970 | 36.53 | 0.296 | 66.6 | 25.4 |
1975 | 37.65 | 0.224 | - | - |
1980 | 39.28 | 0.326 | 70.2 | 29.2 |
1985 | 41.12 | 0.368 | - | - |
1990 | 42.92 | 0.360 | 72.5 | 33.6 |
1995 | 44.70 | 0.356 | - | - |
2000 | 46.60 | 0.380 | 74.4 | 39.3 |
2005 | 48.96 | 0.472 | - | - |
2010 | 51.45 | 0.498 | 76.0 | 46.2 |
2015 | 53.84 | 0.478 | - | - |
2020 | 57.40 | 0.712 | 77.2 | 53.1 |
Tab. 3
Changes in near surface temperature of major cities in China from 1979 to 2018"
城市 | 年平均气温/℃ | 1979—2018年 | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1979年 | 1980年 | 1985年 | 1990年 | 1995年 | 2000年 | 2005年 | 2010年 | 2015年 | 2018年 | 年气温差/℃ | 年平均气温/℃ | 年最高气温/℃ | 年最低气温/℃ | ||
哈尔滨市 | 4.71 | 3.10 | 3.40 | 5.53 | 5.38 | 4.67 | 4.75 | 4.52 | 5.53 | 5.11 | 0.40 | 4.87 | 12.14(2007年) | -1.89(1980年) | |
长春市 | 5.65 | 4.56 | 4.94 | 7.00 | 6.62 | 5.74 | 5.64 | 5.24 | 7.20 | 6.91 | 1.26 | 6.21 | 12.95(2007年) | -0.37(1980年) | |
沈阳市 | 8.57 | 7.70 | 7.97 | 8.47 | 8.58 | 8.32 | 8.06 | 7.30 | 8.99 | 8.82 | 0.25 | 8.52 | 16.15(2014年) | 1.16(2009年) | |
广州市 | 21.78 | 22.18 | 21.58 | 22.65 | 22.26 | 22.60 | 22.90 | 22.71 | 22.75 | 22.49 | 0.71 | 22.41 | 27.91(2007年) | 10.64(1988年) | |
乌鲁木齐市 | 5.40 | 5.80 | 5.34 | 6.94 | 7.07 | 6.51 | 6.98 | 6.77 | 7.75 | 6.30 | 0.90 | 6.70 | 14.51(1997年) | 0.07(1988年) | |
上海市 | 15.91 | 15.00 | 15.75 | 16.92 | 16.47 | 17.17 | 17.05 | 17.21 | 17.13 | 18.84 | 2.93 | 16.75 | 21.94(2007年) | 7.26(1988年) | |
青岛市 | 13.25 | 12.25 | 12.34 | 13.57 | 13.42 | 13.67 | 13.27 | 13.26 | 14.17 | 13.95 | 0.70 | 13.45 | 17.96(2017年) | 5.93(1988年) | |
大连市 | 11.51 | 10.63 | 10.31 | 11.84 | 12.03 | 11.38 | 10.83 | 10.35 | 12.13 | 12.32 | 0.81 | 11.61 | 16.61(2014年) | 4.66(1987年) | |
合肥市 | 16.03 | 14.94 | 15.27 | 16.37 | 16.32 | 16.70 | 16.14 | 16.45 | 16.71 | 17.09 | 2.15 | 16.26 | 22.23(2017年) | 6.87(1988年) | |
武汉市 | 16.84 | 16.00 | 16.16 | 17.10 | 17.29 | 17.61 | 17.73 | 16.79 | 17.25 | 17.74 | 0.90 | 17.12 | 22.90(2013年) | 7.40(1988年) | |
西安市 | 13.70 | 13.07 | 13.09 | 13.63 | 14.33 | 14.03 | 14.02 | 14.22 | 13.69 | 15.28 | 1.58 | 13.93 | 21.97(2013年) | 5.28(1988年) | |
北京市 | 10.94 | 10.92 | 11.45 | 12.60 | 13.17 | 12.55 | 12.81 | 12.22 | 13.30 | 13.19 | 2.25 | 12.69 | 19.66(2017年) | 4.39(1987年) | |
兰州市 | 7.95 | 8.32 | 8.00 | 8.95 | 8.50 | 9.57 | 8.41 | 8.51 | 9.31 | 8.94 | 0.99 | 8.80 | 17.08(2015年) | 0.77(1984年) |
Tab. 5
Urbanization level, groundwater level, and land subsidence in the Suzhou-Wuxi-Changzhou region"
年份 | 城市化水平/% | 地下水位 | 地面沉降 |
---|---|---|---|
1949 | 12.0 | -2~-3 m | - |
1960s | 15.0 | 年均下降1~2 m | - |
1970s | 16.0 | 苏州市、无锡市、常州市分别下降到-10.0 m、-29.0 m和-12.8 m | 分别出现50 km2以上的地面沉降区 |
1976 | 15.0 | 苏州市、无锡市、常州市分别下降到-55.0 m、-59.0 m和-58.0 m | 地下水位-15 m等值线面积达到了1500 km2 |
1980s | 20.0 | - | 沿沪宁线宽30 km,长125 km,面积达5400 km2 |
1990s | 25.0 | 苏州市、无锡市、常州市分别降到-66.32 m、-79.47 m、-78.21 m | 最大沉降速率一度达到120 mm·a-1,苏州市区最大累计地面下沉降超过1.6 m,无锡市区和常州市区超过1.2 m |
2000 | 57.1 | 禁采地下水政策 | - |
2006 | 65.1 | 苏州市、无锡市、常州市分别下降到-66.4 m、-77.9 m和-86.2 m | 地下水漏斗面积约5400 km2 |
2010 | 70.6 | - | - |
2015 | 74.9 | 累计完成封井7819眼,每年累计压采地下水开采量4.1×108 m3 | 沉降速率控制在每年7 mm以内 |
2018 | 76.1 | - | - |
2019 | 77.0 | 回升至-40 m | 地下水漏斗区已全部消失 |
2020 | 81.7 | - | - |
2021 | 81.9 | - | - |
[1] | 林肯·佩恩. 海洋与文明[M]. 天津: 天津人民出版社, 2017. |
[Lincoln Paine. The sea and civilization: A maritime history of the world[M]. Tianjin: Tianjin People’s Publishing House, 2017.] | |
[2] | Ting S. Studies of the Scottish shoreline[D]. Glasgow: University of Glasgow, 1937. |
[3] | Lolck M. Klima, kold krig og iskerner[M]. Aarhus: Steno Instituttet, 2004. |
[4] | Davis M B. Interglacial pollen spectra from Greenland[C]// Danmarks Geologiske Undersoegelse. II Raekke (Studies in vegetational history in honour of Knud Jessen). Copenhagen:Geological Survey of Denmark (DGU), 1954: 65-72. |
[5] |
Dansgaard W, Johnsen S J, Møller J, et al. One thousand centuries of climatic record from Camp Century on the Greenland ice sheet[J]. Science, 1969, 166(3903): 377-381.
pmid: 17796550 |
[6] | Malone T F, Roederer J G. Global change[M]. Cambridge: Cambridge University Press, 1985. |
[7] |
Rockström J, Steffen W, Noone K, et al. Planetary boundaries: Exploring the safe operating space for humanity[J]. Ecology and Society, 2009, 14(2): 32, doi: 10.5751/ES-03180-140232.
doi: 10.5751/ES-03180-140232 |
[8] | Crutzen P J, Stoermer E F. The “Anthropocene”[J]. Global Change Newsletter, 2000, 41: 17-18. |
[9] |
Crutzen P J. Geology of mankind[J]. Nature, 2002, 415: 23, doi: 10.1038/415023a.
doi: 10.1038/415023a |
[10] |
Rockström J, Steffen W, Noone K, et al. A safe operating space for humanity[J]. Nature, 2009, 461(7263): 472-475.
doi: 10.1038/461472a |
[11] |
Head L. Contingencies of the Anthropocene: Lessons from the “Neolithic”[J]. The Anthropocene Review, 2014, 1(2): 113-125.
doi: 10.1177/2053019614529745 |
[12] | 邱振威, 庄丽娜, 饶慧芸, 等. 8000多年前淮河流域的水稻栽培与驯化——来自江苏韩井遗址的证据[J]. 中国科学: 地球科学, 2022, 52(6): 1054-1064. |
[Qiu Zhenwei, Zhuang Lina, Rao Huiyun, et al. Excavation at Hanjing Site Yields: Evidence of early rice cultivation in the Huai River more than 8000 years ago[J]. Scientia Sinica (Terrae), 2022, 52(6): 1054-1064.] | |
[13] | Childe V C. Man makes himself[M]. London: Watts & Co., 1936. |
[14] |
Ruddiman W F. The Anthropogenic greenhouse era began thousands of years ago[J]. Climatic Change, 2003, 61(3): 261-293.
doi: 10.1023/B:CLIM.0000004577.17928.fa |
[15] |
Jenny J P, Koirala S, Gregory-Eaves I, et al. Human and climate global-scale imprint on sediment transfer during the Holocene[J]. Proceedings of the National Academy of Sciences, 2019, 116(46): 22972-22976.
doi: 10.1073/pnas.1908179116 |
[16] |
Certini G, Scalenghe R. Anthropogenic soils are the golden spikes for the Anthropocene[J]. The Holocene, 2011, 21(8): 1269-1274.
doi: 10.1177/0959683611408454 |
[17] |
Stephens L, Fuller D, Boivin N, et al. Archaeological assessment reveals earth’s early transformation through land use[J]. Science, 2019, 365(6456): 897-902.
doi: 10.1126/science.aax1192 pmid: 31467217 |
[18] |
Sullivan A P, Bird D W, Perry G H. Human behaviour as a long-term ecological driver of non-human evolution[J]. Nature Ecology & Evolution, 2017, 1: 0065, doi: 10.1038/s41559-016-0065.
doi: 10.1038/s41559-016-0065 |
[19] | 竺可桢. 中国近五千年来气候变迁的初步研究[J]. 考古学报, 1972, 17(1): 15-38. |
[Zhu Kezhen. Preliminary study on climate change in China in recent 5 thousand years[J]. Acta Archaeologica Sinica, 1972, 17(1): 15-38.] | |
[20] | Mintz S W. Sweetness and power: The place of sugar in modern history[M]. New York: Penguin, 1986. |
[21] |
Haraway D, Ishikawa N, Gilbert S F, et al. Anthropologists are talking: About the Anthropocene[J]. Ethnos, 2016, 81(3): 535-564.
doi: 10.1080/00141844.2015.1105838 |
[22] |
Lewis S L, Maslin M A. Defining the Anthropocene[J]. Nature, 2015, 519(7542): 171-180.
doi: 10.1038/nature14258 |
[23] | Musson A E. The growth of British industry[M]. London: Batsford, 1978. |
[24] |
Steffen W, Crutzen P, McNeill J R. The Anthropocene: Are humans now overwhelming the great forces of nature?[J]. AMBIO: A Journal of the Human Environment, 2007, 36(8): 614-621.
doi: 10.1579/0044-7447(2007)36[614:TAAHNO]2.0.CO;2 |
[25] | Ellis E C, Goldewijk K K, Siebert S, et al. Anthropogenic transformation of the biomes, 1700 to 2000[J]. Global Ecology and Biogeography, 2010, 19(5): 589-606. |
[26] |
Castree N. Changing the Anthropo(s)cene: Geographers, global environmental change and the politics of knowledge[J]. Dialogues in Human Geography, 2015, 5(3): 301-316.
doi: 10.1177/2043820615613216 |
[27] |
Millar S W, Mitchell D. The tight dialectic: The Anthropocene and the capitalist production of nature[J]. Antipode, 2017, 49(Suppl. 1): 75-93.
doi: 10.1111/anti.v49.S1 |
[28] |
Sexton A E. Eating for the post-Anthropocene: Alternative proteins and the biopolitics of edibility[J]. Transactions of the Institute of British Geographers, 2018, 43(4): 586-600.
doi: 10.1111/tran.2018.43.issue-4 |
[29] |
Gibson-Graham J K. Reading for difference in the archives of tropical geography: Imagining an (other) economic geography for beyond the Anthropocene[J]. Antipode, 2020, 52(1): 12-35.
doi: 10.1111/anti.v52.1 |
[30] |
Ellis E, Maslin M, Boivin N, et al. Involve social scientists in defining the Anthropocene[J]. Nature, 2016, 540(7632): 192-193.
doi: 10.1038/540192a |
[31] |
Steffen W, Grinevald J, Crutzen P, et al. The Anthropocene: Conceptual and historical perspectives[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2011, 369(1938): 842-867.
doi: 10.1098/rsta.2010.0327 |
[32] | Malm A. Fossil capital: The rise of steam power and the roots of global warming[M]. New York: Verso, 2016. |
[33] |
Brito-Morales I, García Molinos J, Schoeman D S, et al. Climate velocity can inform conservation in a warming world[J]. Trends in Ecology & Evolution, 2018, 33(6): 441-457.
doi: 10.1016/j.tree.2018.03.009 |
[34] |
Azad N, Behmanesh J, Rezaverdinejad V, et al. An analysis of optimal fertigation implications in different soils on reducing environmental impacts of agricultural nitrate leaching[J]. Scientific Report, 2020, 10: 7797, doi: 10.1038/s41598-020-64856-x.
doi: 10.1038/s41598-020-64856-x |
[35] |
Zipper S C, Jaramillo F, Wang-Erlandsson L, et al. Integrating the water planetary boundary with water management from local to global scales[J]. Earth’s Future, 2020, 8(2): e2019EF001377, doi: 10.1029/2019EF001377.
doi: 10.1029/2019EF001377 |
[36] |
Zhang Q, Wiedmann T, Fang K, et al. Bridging planetary boundaries and spatial heterogeneity in a hybrid approach: A focus on Chinese provinces and industries[J]. Science of the Total Environment, 2022, 804: 150179, doi: 10.1016/j.scitotenv.2021.150179.
doi: 10.1016/j.scitotenv.2021.150179 |
[37] | McNeill J R, Engelke P. The great acceleration: An environmental history of the Anthropocene since 1945[M]. Cambridge: Harvard University Press, 2014. |
[38] |
Zalasiewicz J, Waters C N, Williams M, et al. When did the Anthropocene begin? A mid-twentieth century boundary level is stratigraphically optimal[J]. Quaternary International, 2015, 383: 196-203.
doi: 10.1016/j.quaint.2014.11.045 |
[39] | Carrington D. The Anthropocene epoch: Scientists declare dawn of human-influenced age[N]. The Guardian, 2016-08-29(16). |
[40] |
Steffen W, Broadgate W, Deutsch L, et al. The trajectory of the Anthropocene: The great acceleration[J]. The Anthropocene Review, 2015, 2(1): 81-98.
doi: 10.1177/2053019614564785 |
[41] | Cochrane W W. The development of American agriculture: A historical analysis[M]. 2nd ed. Minneapolis: University of Minnesota, 1993. |
[42] |
Mekonnen M M, Hoekstra A Y. Water footprint benchmarks for crop production: A first global assessment[J]. Ecological Indicators, 2014, 46: 214-223.
doi: 10.1016/j.ecolind.2014.06.013 |
[43] |
Foley J A, Defries R, Asner G P, et al. Global consequences of land use[J]. Science, 2005, 309(5734): 570-574.
doi: 10.1126/science.1111772 pmid: 16040698 |
[44] |
Gu C. Urbanization: Positive and negative effects[J]. Science Bulletin, 2019, 64(5): 281-283.
doi: 10.1016/j.scib.2019.01.023 pmid: 36659587 |
[45] | Gu C. Urbanization[C]// Kobayashi A. International Encyclopedia of Human Geography. 2nd ed.ed. Amsterdam: Elsevier, 2020: 141-153. |
[46] |
Kraas F. Megacities and global change: Key priorities[J]. The Geographical Journal, 2007, 173(1): 79-82.
doi: 10.1111/geoj.2007.173.issue-1 |
[47] |
Dhakal S. Urban energy use and carbon emissions from cities in China and policy implications[J]. Energy Policy, 2009, 37(11): 4208-4219.
doi: 10.1016/j.enpol.2009.05.020 |
[48] | Seto K C, Dhakal S, Bigio A, et al. Human settlements, infrastructure and spatial planning[C]// Edenhofer O, Pichs-Madruga R, Sokona Y, et al. Climate Change: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2014. |
[49] | 崔功豪, 王本炎, 查彦玉, 等. 城市地理学[M]. 南京: 江苏教育出版社, 1992: 82. |
[Cui Gonghao, Wang Benyan, Zha Yanyu, et al. Urban geography[M]. Nanjing: Jiangsu Education Press, 1992: 82.] | |
[50] | Millennium Ecosystem Assessment. Ecosystems and human well-being: Wetlands and water[R]. Washington: World Resources Institute, 2005. |
[51] |
Crippa M, Solazzo E, Guizzardi D, et al. Food systems are responsible for a third of global Anthropogenic GHG emissions[J]. Nature Food, 2021, 2(3): 198-209.
doi: 10.1038/s43016-021-00225-9 pmid: 37117443 |
[52] | Stocker T F, Qin D, Plattner G-K, et al. Climate Change 2013: The physical science basis[C]// Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2013. |
[53] |
Fang S, Mao K. Dataset of daily near-surface air temperature in China from 1979 to 2018[J]. Earth System Science Data, 2022, 14(3): 1413-1432.
doi: 10.5194/essd-14-1413-2022 |
[54] | Emery K O. Relative sea levels from tide gauge records[J]. National Academy of Sciences Prodeedings, 1980, 77: 6968-6922. |
[55] | Aubrey D G, Emery K O. Relative sea levels of Japan from tide-gauge records[J]. Geological Society of America Bulletin, 1986, 94: 194-205. |
[56] | 国家海洋局. 1989年中国海洋局公报[R]. 北京: 国家海洋局, 1990. |
[State Oceanic Administration. Bulletin of the State Oceanic Administration 1989[R]. Beijing: State Oceanic Administration, 1990.] | |
[57] | 曾昭璇, 刘南威, 胡男, 等. 珠江口海平面最近25年上升趋势研究及其影响[J]. 热带地貌, 1991, 12(增刊1): 1-18. |
[Zeng Zhaoxuan, Liu Nanwei, Hu Nan, et al. Studies on tendency and impact of sea level rise in Zhujiang River estuary[J]. Tropical Geomorphology, 1991, 12(Suppl. 1): 1-18.] | |
[58] | 王志豪, 刘天珍. 论我国海岸带的三个基准面[J]. 海洋科技资料, 1981, 10(5): 1-22. |
[Wang Zhihao, Liu Tianzhen. On the three datums of China’s coastal zone[J]. Marine Science Bulletin, 1981, 10(5): 1-22.] | |
[59] | 李平日. 珠江三角洲全新世海进看未来海面上升的可能影响及其对策[C]// 珠江三角洲环境与空间发展. 北京: 学术期刊出版社, 1990: 1-8. |
[Li Pingri. Holocene transgression in the Pearl River Delta in view of the possible impact of future sea level rise and its countermeasures[C]// Pearl River Delta Environment and Spatial Development. Beijing: Academic Journal Press, 1990: 1-8.] | |
[60] |
Moran D D, Wackernagel M, Kitzes J A, et al. Measuring sustainable development: Nation by nation[J]. Ecological Economics, 2008, 64(3): 470-474.
doi: 10.1016/j.ecolecon.2007.08.017 |
[61] |
Steinfeld H, Gerber P. Livestock production and the global environment: Consume less or produce better?[J]. Proceedings of the National Academy of Sciences, 2010, 107(43): 18237-18238.
doi: 10.1073/pnas.1012541107 |
[62] |
Grimm N B, Faeth S H, Golubiewski N E, et al. Global change and the ecology of cities[J]. Science, 2008, 319(5864): 756-760.
doi: 10.1126/science.1150195 pmid: 18258902 |
[63] |
García-Valdés R, Bugmann H, Morin X. Climate change-driven extinctions of tree species affect forest functioning more than random extinctions[J]. Diversity and Distributions, 2018, 24(7): 906-918.
doi: 10.1111/ddi.2018.24.issue-7 |
[64] | 刘培林. 世界城市化和城市发展的若干新趋势新理念[J]. 理论学刊, 2012, 27(12): 54-57. |
[Liu Peilin. Some new trends and new ideas of urbanization and urban development in the world[J]. Theory Journal, 2012, 27(12): 54-57.] | |
[65] |
顾朝林, 陈田, 史培军. 1991年苏皖城市洪涝灾害成因分析[J]. 地理学报, 1992, 47(4): 289-301.
doi: 10.11821/xb199204001 |
[Gu Chaolin, Chen Tian, Shi Peijun. Analysis of formation factors for the Jiangsu-Anhui urban floods and water logging in 1991[J]. Acta Geographica Sinica, 1992, 47(4): 289-301.]
doi: 10.11821/xb199204001 |
|
[66] | 沈正平. 迈向21世纪的长江三角洲地区环境保护[C]// 张颢瀚, 朱敏彦, 曾骅. 21世纪初长江三角洲区域发展战略研究. 南京: 南京大学出版社, 2000: 268-269. |
[Shen Zhengping. Environmental protection in the Yangtze River Delta Region towards the 21st century[C]// Zhang Haohan, Zhu Minyan, Zeng Hua. A study of Regional Development Strategies in the Yangtze River Delta at the Beginning of the 21st Century. Nanjing: Nanjing University Press, 2000: 268-269.] | |
[67] | 陈梦熊. 关于海平面上升与控制城市地面沉降[C]// 中国科学院地学部. 海平面上升对中国三角洲地区的影响及对策. 北京: 科学出版社, 1994: 267-278. |
[Chen Mengxiong. On sea level rise and control of urban ground subsidence[C]// Department of Geosciences, Chinese Academy of Sciences. Impacts of Sea Level Rise on the Delta Region of China and Countermeasures. Beijing: Science Press, 1994: 267-268.] | |
[68] |
Gu C, Hu L, Zhang X, et al. Climate change and urbanization in the Yangtze River Delta[J]. Habitat International, 2011, 35(4): 544-552.
doi: 10.1016/j.habitatint.2011.03.002 |
[69] |
Fang C, Ren Y. Analysis of emergy-based metabolic efficiency and environmental pressure on the local coupling and telecoupling between urbanization and the eco-environment in the Beijing-Tianjin-Hebei urban agglomeration[J]. Science China Earth Sciences, 2017, 60(6): 1083-1097.
doi: 10.1007/s11430-016-9038-6 |
[70] | 秦伯强, 吴庆农, 高俊峰, 等. 太湖地区的水资源与水环境——问题、原因与管理[J]. 自然资源学报, 2002, 17(2): 221-228. |
[Qin Boqiang, Wu Qingnong, Gao Junfeng, et al. Water environmental issues in Taihu Lake of China: Problems, causes and management[J]. Journal of Natural Resources, 2002, 17(2): 221-228.] | |
[71] | Quammen D. Spillover: Animal infections and the next human pandemic[M]. New York: W. W. Norton & Company, 2012. |
[72] |
Simu G M, Atchana J, Soica C M, et al. Pharmaceutical mixtures: Still a concern for human and environmental health[J]. Current Medicinal Chemistry, 2020, 27(1): 121-153.
doi: 10.2174/0929867325666181108094222 pmid: 30406736 |
[73] | Hekstra G P. Will climatic changes flood the Netherland?[J]. Ambic, 1986, 15(6): 316-326. |
[74] | Milliman J D, Broadus J M, Gable F. Environmental and economic implications of rising sea level and subsiding deltas: The Nile and Bengal examples[J]. Ambio, 1989, 18(6): 340-345. |
[75] | Ren M. Sea-level rise trends and rise estimate in 2030 in the Yellow River Delta[J]. Acta Geographica Sinica, 1993, 48(5): 385-393. |
[76] | 缪启龙. 气候变化对长江三角洲海岸带的可能影响[J]. 自然灾害学报, 1995, 4(2): 79-85. |
[Miao Qilong. The possible impact of climate change on the delta coast of Yangtze River[J]. Journal of Natural Disasters, 1995, 4(2): 79-85.] | |
[77] | 施雅风, 朱季文, 谢志仁, 等. 长江三角洲及毗连地区海平面上升影响预测与防治对策[J]. 中国科学: 地球科学, 2000, 30(3): 225-232. |
[Shi Yafeng, Zhu Jiwen, Xie Zhiren, et al. Sea level rise influence forecast and prevention and cure countermeasure in the Yangtze River Delta and near region[J]. Scientia Sinica (Terrae), 2000, 30(3): 225-232.] | |
[78] | 顾朝林, 张晓明, 王小丹. 气候变化·城市化·长江三角洲[J]. 长江流域资源与环境, 2011, 20(1): 1-8. |
[Gu Chaolin, Zhang Xiaoming, Wang Xiaodan. Climate change, urbanization and the Yangtze River Delta[J]. Resource Environment Yangtze Basin, 2011, 20(1): 1-8.] | |
[79] | 孙清, 张玉淑, 胡恩, 等. 海平面上升对长江三角洲地区的影响评价研究[J]. 长江流域资源与环境, 1997, 5(1): 59-65. |
[Sun Qing, Zhang Yushu, Hu En, et al. Potential impacts of sea level rise on the economy and environment in the Yangtze River Delta and the countermeasures thereof[J]. Resources and Environment in the Yangtze Valley, 1997, 5(1): 59-65.] | |
[80] | 刘杜娟, 叶银灿. 长江三角洲地区的相对海平面上升与地面沉降[J]. 地质灾害与环境保护, 2005, 16(4): 400-404. |
[Liu Dujuan, Ye Yincan. Relative sea surface rise and land subsidence in Changjiang Delta area[J]. Journal of Geological Hazards and Environment Preservation, 2005, 16(4): 400-404.] | |
[81] |
Courtillot V, Olson P. Mantle plumes link magnetic superchrons to phanerozoic mass depletion events[J]. Earth and Planetary Science Letters, 2007, 260(3-4): 495-504.
doi: 10.1016/j.epsl.2007.06.003 |
[82] | Vernadsky V I. The chemical structure of the earth’s biosphere and its surroundings[M]. Moscow: Nauka, 1987. |
[83] |
Brook B W, Ellis E C, Perring M P, et al. Does the terrestrial biosphere have planetary tipping points?[J]. Trends in Ecology & Evolution, 2013, 28(7): 396-401.
doi: 10.1016/j.tree.2013.01.016 |
[84] | Raworth K. A safe and just space for humanity: Can we live within the doughnut?[EB/OL]. [2012-02-13]. https://www.oxfam.org/en/research/safe-and-just-space-humanity. |
[85] | 朱日祥, 侯增谦, 郭正堂, 等. 宜居地球的过去、现在与未来——地球科学发展战略概要[J]. 科学通报, 2021, 66(35): 4485-4490. |
[Zhu Rixiang, Hou Zengqian, Guo Zhengtang, et al. Summary of “the past, present and future of the habitable earth: Development strategy of earth science”[J]. Chinese Science Bulletin, 2021, 66(35): 4485-4490.] | |
[86] | 高扬, 王朔月, 陆瑶, 等. 区域陆-水-气碳收支与碳平衡关键过程对地球系统碳中和的意义[J]. 中国科学: 地球科学, 2022, 52(5): 832-841. |
[Gao Yang, Wang Shuoyue, Lu Yao, et al. Carbon budget and balance critical processes of the regional land-water-air interface: Indicating the earth system’s carbon neutrality[J]. Scientia Sinica (Terrae), 2022, 52(5): 832-841.] | |
[87] |
Glikson A. Fire and human evolution: The deep-time blueprints of the Anthropocene[J]. Anthropocene, 2013, 3: 89-92.
doi: 10.1016/j.ancene.2014.02.002 |
[88] | Davis H, Todd Z. On the importance of a date, or, decolonizing the Anthropocene[J]. ACME: An International Journal for Critical Geographies, 2017, 16(4): 761-780. |
[89] | Zalasiewicz J, Williams M, Smith A, et al. Are we now living in the Anthropocene?[J]. GSA Today, 2008, 18(2): 4-8. |
[90] | Palsson G, Szerszynski B, Sörlin S, et al. Reconceptualizing the “Anthropos” in the Anthropocene: Integrating the social sciences and humanities in global environmental change research[J]. Environmental Science & Policy, 2013, 28: 3-13. |
[91] |
Ogden L, Heynen N, Oslender U, et al. Global assemblages, resilience, and earth stewardship in the Anthropocene[J]. Frontiers in Ecology and the Environment, 2013, 11(7): 341-347.
doi: 10.1890/120327 |
[92] | Ruddiman W F. Earth’s climate: Past and future[M]. New York: W.H. Freeman & Company, 2001. |
[93] |
Ruddiman W F, Ellis E C, Kaplan J O, et al. Defining the epoch we live in[J]. Science, 2015, 348(6230): 38-39.
doi: 10.1126/science.aaa7297 pmid: 25838365 |
[94] | Humboldt A. Cosmos: A sketch of a physical description of the universe[M]. London: Henry G. Bohn, 1849. |
[95] | Marsh G P. Man and nature: Or, physical geography as modified by human action[M]. Seattle: University of Washington Press, 2003. |
[96] | Reclus E. The feeling for nature in modern society[C]// Clark J, Martin C. Anarchy, Geography, Modernity:Selected Writings of Elisée Reclus. Oakland: PM Press, 2013: 103-112. |
[97] | Urban M A. In defense of crappy landscapes[C]// Lave R, Biermann C, Lane S N. The Palgrave Handbook of Critical Physical Geography. Cham: Palgrave Macmillan, 2018: 49-66. |
[98] |
Larsen T B, Harrington J. Geographic thought and the Anthropocene: What geographers have said and have to say[J]. Annals of the American Association of Geographers, 2021, 111(3): 729-741.
doi: 10.1080/24694452.2020.1796575 |
[99] |
Stallins J A. The Anthropocene: The one, the many, and the topological[J]. Annals of the American Association of Geographers, 2021, 111(3): 638-646.
doi: 10.1080/24694452.2020.1760781 |
[100] |
Zeeman E C. Catastrophe theory[J]. Scientific American, 1976, 234(4): 65-83.
doi: 10.1038/scientificamerican0476-65 |
[101] | Graf W L. Catastrophe theory as a model for change in fluvial systems[C]// Rhodes D D, Williams E J. Adjustments of the Fluvial System. London: Allen and Unwin, 1979: 13-32. |
[102] |
Thorn C E, Welford M R. The equilibrium concept in geomorphology[J]. Annals of the Association of American Geographers, 1994, 84(4): 666-696.
doi: 10.1111/j.1467-8306.1994.tb01882.x |
[103] |
Scheffer M, Carpenter S, Foley J A, et al. Catastrophic shifts in ecosystems[J]. Nature, 2001, 413(6856): 591-596.
doi: 10.1038/35098000 |
[104] |
Barnosky A D, Hadly E A, Bascompte J, et al. Approaching a state shift in earth’s biosphere[J]. Nature, 2012, 486(7401): 52-58.
doi: 10.1038/nature11018 |
[105] |
Dakos V, Carpenter S R, van Nes E H, et al. Resilience indicators: Prospects and limitations for early warnings of regime shifts[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370(1659): 20130263, doi: 10.1098/rstb.2013.0263.
doi: 10.1098/rstb.2013.0263 |
[106] |
Davis J, Moulton A A, van Sant L, et al. Anthropocene, Capitalocene, Plantationocene? A manifesto for ecological justice in an age of global crises[J]. Geography Compass, 2019, 13(5): e12438, doi: 10.1111/gec3.12438.
doi: 10.1111/gec3.12438 |
[107] | 秦大河, 姚檀栋, 丁永建, 等. 冰冻圈科学体系的建立及其意义[J]. 中国科学院院刊, 2020, 35(4): 394-406. |
[Qin Dahe, Yao Tandong, Ding Yongjian, et al. The establishment and significance of the cryosphere scientific system[J]. Bulletin of Chinese Academy of Sciences, 2020, 35(4): 394-406.] | |
[108] |
Qin D, Ding Y, Xiao C, et al. Cryospheric science: Research framework and disciplinary system[J]. National Science Review, 2018, 5(2): 255-268.
doi: 10.1093/nsr/nwx108 |
[109] |
丁永建, 效存德. 冰冻圈变化及其影响研究的主要科学问题概论[J]. 地球科学进展, 2013, 28(10): 1067-1076.
doi: 10.11867/j.issn.1001-8166.2013.10.1067 |
[Ding Yongjian, Xiao Cunde. Challenges in the study of cryospheric changes and their impacts[J]. Advances in Earth Science, 2013, 28(10): 1067-1076.]
doi: 10.11867/j.issn.1001-8166.2013.10.1067 |
|
[110] |
Vörömarty C J, Sahagian D. Anthropogenic disturbance of the terrestrial water cycle[J]. BioScience, 2000, 50(9): 753-765.
doi: 10.1641/0006-3568(2000)050[0753:ADOTTW]2.0.CO;2 |
[111] | 王浩, 贾仰文, 杨贵羽, 等. 海河流域二元水循环及其伴生过程综合模拟[J]. 科学通报, 2013, 58(12): 1064-1077. |
[Wang Hao, Jia Yangwen, Yang Guiyu, et al. Integrated simulation of the dualistic water cycle and its associated processes in the Haihe River Basin[J]. Chinese Science Bulletin, 2013, 58(12): 1064-1077.] | |
[112] | 秦大庸, 陆垂裕, 刘家宏, 等. 流域“自然-社会”二元水循环理论框架[J]. 科学通报, 2014, 59(增刊1): 419-427. |
[Qin Dayong, Lu Chuiyu, Liu Jiahong, et al. Theoretical framework of dualistic nature-social water cycle[J]. Chinese Science Bulletin, 2014, 59(Suppl.1): 419-427.] | |
[113] |
Biggs T W, Scott C A, Gaur A, et al. Impacts of irrigation and Anthropogenic aerosols on the water balance, heat fluxes, and surface temperature in a river basin[J]. Water Resources Research, 2008, 44(12): W12415, doi: 10.1029/2008WR006847.
doi: 10.1029/2008WR006847 |
[114] | Pielke Sr. R, Beven K, Brasseur G, et al. Climate change: The need to consider human forcings besides greenhouse gases[J]. Eos, Transactions American Geophysical Union, 2009, 90(45): 413. |
[115] |
Sivapalan M, Savenije H H G, Blöschl G. Socio-hydrology: A new science of people and water[J]. Hydrological Processes, 2012, 26(8): 1270-1276.
doi: 10.1002/hyp.8426 |
[116] |
Montanari A, Young G, Savenije H H G, et al. “Panta rhei: Everything flows”: Change in hydrology and society: The IAHs scientific decade 2013—2022[J]. Hydrological Sciences Journal, 2013, 58(6): 1256-1275.
doi: 10.1080/02626667.2013.809088 |
[117] |
Edgeworth M, Ellis E C, Gibbard P, et al. The chronostratigraphic method is unsuitable for determining the start of the Anthropocene[J]. Progress in Physical Geography: Earth and Environment, 2019, 43(3): 334-344.
doi: 10.1177/0309133319831673 |
[118] |
Young K. Biogeography of the Anthropocene: Novel species assemblages[J]. Progress in Physical Geography: Earth and Environment, 2014, 38(5): 664-673.
doi: 10.1177/0309133314540930 |
[119] |
Young K. Biogeography of the Anthropocene: Domestication[J]. Progress in Physical Geography: Earth and Environment, 2016, 40(1): 161-174.
doi: 10.1177/0309133315598724 |
[120] | Bettencourt L M. Introduction to urban science: Evidence and theory of cities as complex systems[M]. Cambridge: MIT Press, 2021. |
[121] |
De Pascale F, Dattilo V. The geoethical semiosis of the Anthropocene: The Peircean triad for a reconceptualization of the relationship between human beings and environment[J]. Annals of the American Association of Geographers, 2020, 111(3): 647-654.
doi: 10.1080/24694452.2020.1843994 |
[1] | KANG Limin, TENG Xinru, CHE Jiahang, HUAI Baojuan. Spatiotemporal variations of snow cover on the northern slope of Kunlun Mountains [J]. Arid Land Geography, 2024, 47(9): 1462-1471. |
[2] | WANG Nan, LIU Zexuan, ZHENG Jianghua, ZHONG Tao, MENG Chengfeng. Spatiotemporal characteristics and driving forces of glacial lakes in Tianshan Mountains [J]. Arid Land Geography, 2024, 47(9): 1472-1481. |
[3] | CHAO Bao, ZHAO Yuanyuan, WU Haiyan, LI Yuan, SU Ning. Ecosystem services and its response to climate factors in the Mongolian Plateau from 2000 to 2020 [J]. Arid Land Geography, 2024, 47(9): 1577-1586. |
[4] | XIA Tingting, XUE Xuan, WANG Haowei, XU Wenzhe, SHENG Ziyi, WANG Yang. Changes in terrestrial water storage and its drivers on the north slope of Kunlun Mountains [J]. Arid Land Geography, 2024, 47(8): 1292-1303. |
[5] | LIU Miaomiao, WU Weidong. Empirical study of the coupling of new urbanization and rural revitalization in Shaanxi Province [J]. Arid Land Geography, 2024, 47(8): 1420-1430. |
[6] | ZHU Chenggang, CHEN Yaning, ZHANG Mingjun, CHE Yanjun, SUN Meiping, ZHAO Ruifeng, WANG Yang, LIU Yuting. Preliminary report on scientific investigation of water resources on the northern slope of Kunlun Mountains [J]. Arid Land Geography, 2024, 47(7): 1097-1105. |
[7] | ZHANG Jing, MA Long, LIU Tingxi, SUN Bolin, QIAO Zixu. Reconstruction of the minimum temperature over the past 202 years based on tree rings of Picea crassifolia in the Helan Mountains [J]. Arid Land Geography, 2024, 47(6): 909-921. |
[8] | FAN Jing, SHEN Yanbo, CHANG Rui. Impact of climate change on the selection of typical meteorological years in solar energy resource assessment [J]. Arid Land Geography, 2024, 47(6): 922-931. |
[9] | LI Hui, LIU Tiejun, WANG Shaohui, LIU Dongwei. Spatial and temporal variation of water use efficiency and its influencing factors in desert steppe of Inner Mongolia from 2001 to 2021 [J]. Arid Land Geography, 2024, 47(6): 993-1003. |
[10] | XIANG Yanyun, WANG Yi, CHEN Yaning, ZHANG Qifei, ZHANG Yujie. Prediction of future hydrological drought risk in the Yarkant River Basin based on CMIP6 models [J]. Arid Land Geography, 2024, 47(5): 798-809. |
[11] | ZHAO Mingjie, WANG Ninglian, SHI Chenlie, HOU Jingqi. Temporal and spatial variations of lake ice phenology in large lakes of Central Asia from 2000 to 2020 [J]. Arid Land Geography, 2024, 47(4): 561-575. |
[12] | WANG Shuzhi, WEN Deping. Attribution analysis of runoff change in the Datong River Basin, Qinghai-Tibet Plateau [J]. Arid Land Geography, 2024, 47(2): 203-213. |
[13] | CHANG Xuexiang, ZHAO Wenzhi, TIAN Quanyan. Advances in climate change and its impact on the stability of mountain forest ecosystems and hydrological processes in arid regions [J]. Arid Land Geography, 2024, 47(2): 228-236. |
[14] | CHEN Lihua, CHE Yanjun, CAO Yun, ZHANG Mingjun, GU Lailei, WU Jiakang, LYU Weiwei. Responses of glacier and lake to local climate change in the Jingyu Lake Basin, east Kunlun Mountains [J]. Arid Land Geography, 2024, 47(10): 1640-1650. |
[15] | SUN Jinrong, LI Xing, WEI Jingting. Area change characteristics of Wuliangsuhai Lake driven by climate change and human activities in the basin in the past 40 years [J]. Arid Land Geography, 2024, 47(10): 1688-1699. |
|