Arid Land Geography ›› 2024, Vol. 47 ›› Issue (4): 561-575.doi: 10.12118/j.issn.1000-6060.2023.200
• Climate Change and Surface Process • Previous Articles Next Articles
ZHAO Mingjie1,2(), WANG Ninglian1,2,3(), SHI Chenlie1,2, HOU Jingqi1,2
Received:
2023-05-05
Revised:
2023-06-16
Online:
2024-04-25
Published:
2024-05-17
Contact:
WANG Ninglian
E-mail:17600776722@163.com;nlwang@nwu.edu.cn
ZHAO Mingjie, WANG Ninglian, SHI Chenlie, HOU Jingqi. Temporal and spatial variations of lake ice phenology in large lakes of Central Asia from 2000 to 2020[J].Arid Land Geography, 2024, 47(4): 561-575.
Tab. 1
Lake information used in the study"
湖泊名称 | 地理位置 | 面积/km2 | 年份 | 海拔/m | 湖泊类型 |
---|---|---|---|---|---|
卡拉库尔湖 | 39°02′24″N,73°25′12″E | 380 | 2015 | 3914 | 咸水湖 |
巴尔喀什湖 | 46°10′27″N,74°20′25″E | 16996 | 2021 | 342 | 东为咸西为淡 |
查蒂尔-科尔湖 | 40°37′25″N,75°18′20″E | 181 | 2020 | 3530 | 咸水湖 |
马卡科尔湖 | 48°45′23″N,85°45′29″E | 455 | 2019 | 1445 | 咸水湖 |
阿拉湖 | 46°10′17″N,81°35′15″E | 2650 | 2016 | 347 | 咸水湖 |
斋桑泊 | 48°00′07″N,84°00′05″E | 1810 | 2021 | 388 | 淡水湖 |
咸海 | 45°53′25″N,60°23′21″E | 3300 | 2008 | 39 | 咸水湖 |
Tab. 2
Landsat data used in the study"
陆地卫星 | 影像日期(年-月-日) | 湖泊名称 | 陆地卫星 | 影像日期(年-月-日) | 湖泊名称 |
---|---|---|---|---|---|
Landsat7 | 2016-11-17 | 卡拉库尔湖 | Landsat8 | 2018-12-09 | 马卡科尔湖 |
Landsat7 | 2016-12-03 | 巴尔喀什湖 | Landsat8 | 2018-12-25 | 查蒂尔-科尔湖 |
Landsat7 | 2017-01-10 | 查蒂尔-科尔湖 | Landsat8 | 2019-05-02 | 咸海 |
Landsat7 | 2017-05-12 | 马卡科尔湖 | Landsat8 | 2019-05-18 | 斋桑泊 |
Landsat7 | 2017-05-28 | 斋桑泊 | Landsat8 | 2019-11-26 | 巴尔喀什湖 |
Landsat7 | 2017-11-20 | 咸海 | Landsat8 | 2019-12-12 | 阿拉湖 |
Landsat7 | 2017-12-06 | 阿拉湖 | Landsat8 | 2019-12-28 | 卡拉库尔湖 |
Landsat7 | 2017-12-22 | 卡拉库尔湖 | Landsat8 | 2020-01-29 | 斋桑泊 |
Landsat8 | 2018-01-07 | 巴尔喀什湖 | Landsat8 | 2020-05-04 | 咸海 |
Landsat8 | 2018-05-15 | 阿拉湖 | Landsat8 | 2020-05-20 | 卡拉库尔湖 |
Tab. 3
Average lake ice phenology of selected lakes in Central Asia from 2000 to 2020 /d"
湖泊名称 | 开始冻结 | 完全冻结 | 开始消融 | 完全消融 | 冻结期 | 消融期 | 湖冰存在期 | 完全冻结期 |
---|---|---|---|---|---|---|---|---|
巴尔喀什湖 | 333 | 360 | 453 | 471 | 29 | 19 | 140 | 94 |
查蒂尔-科尔湖 | 283 | 330 | 499 | 518 | 49 | 20 | 237 | 170 |
马卡科尔湖 | 324 | 336 | 498 | 505 | 13 | 8 | 182 | 163 |
阿拉湖 | 261 | 334 | 450 | 482 | 75 | 33 | 223 | 117 |
卡拉库尔湖 | 315 | 359 | 493 | 516 | 45 | 23 | 202 | 136 |
咸海 | 336 | - | 365 | 463 | - | - | 127 | - |
斋桑泊 | 326 | 335 | 471 | 479 | 10 | 8 | 153 | 137 |
平均值 | 311 | 342 | 477 | 491 | 35 | 18 | 171 | 126 |
Tab. 4
Change trend of lake ice phenology in selected lakes in Central Asia from 2000 to 2020 /d·(10a)-1"
湖泊名称 | 开始冻结 | 完全冻结 | 开始消融 | 完全消融 | 冻结期 | 消融期 | 完全冻结期 | 湖冰存在期 |
---|---|---|---|---|---|---|---|---|
巴尔喀什湖 | -1.44 | 7.01** | -2.01 | -0.58 | 8.33** | 1.44 | -9.02 | 0.87* |
查蒂尔-科尔湖 | 18.00*** | -0.40 | 2.40 | -1.20 | -19.00*** | -5.00 | 4.10*** | -19.20 |
马卡科尔湖 | 0.70 | 0.40 | -4.90 | -5.20* | -0.40 | -0.30 | -5.30* | -5.90* |
阿拉湖 | 3.00 | 6.00** | -0.90 | -5.70** | 3.00 | -4.70** | -7.00** | -8.70* |
卡拉库尔湖 | -0.30 | 6.80*** | -1.50 | 0.70 | 7.00** | 2.20 | -8.30 | 1.00*** |
咸海 | 1.70 | - | - | -1.50 | - | - | - | -3.20 |
斋桑泊 | 1.00 | 0.90 | -4.40* | -4.00* | -0.10 | -0.40 | -4.60* | -5.00 |
[1] | Wang X, Qin D H, Ren J W, et al. Numerical estimation of thermal insulation performance of different coverage schemes at three places for snow storage[J]. Advances in Climate Change Research, 2021, 12(6): 903-912. |
[2] | IPCC. Climate change 2022: Impacts, adaptation and vulnerability[M]. Cambridge: Cambridge University Press, 2022: 14-26. |
[3] | Alimonti G, Mariani L, Prodi F, et al. A critical assessment of extreme events trends in times of global warming[J]. The European Physical Journal Plus, 2022, 137(1): 1-20. |
[4] | Guo L N, Wu Y H, Zheng H X, et al. Uncertainty and variation of remotely sensed lake ice phenology across the Tibetan Plateau[J]. Remote Sensing, 2018, 10(10): 1534, doi: 10.3390/rs10101534. |
[5] | Du J Y, Kimball J S, Duguay C R, et al. Satellite microwave assessment of northern hemisphere lake ice phenology from 2002 to 2015[J]. The Cryosphere, 2017, 11(1): 47-63. |
[6] |
Hampton S E, Galloway A W, Powers S M, et al. Ecology under lake ice[J]. Ecol Lett, 2017, 20(1): 98-111.
doi: 10.1111/ele.12699 pmid: 27889953 |
[7] | Wang W, Lee X H, Xiao W, et al. Global lake evaporation accelerated by changes in surface energy allocation in a warmer climate[J]. Nature Geoscience, 2018, 11(6): 410-414. |
[8] |
Sharma S, Blagrave K, Magnuson J J, et al. Widespread loss of lake ice around the Northern Hemisphere in a warming world[J]. Nature Climate Change, 2019, 9(3): 227-231.
doi: 10.1038/s41558-018-0393-5 |
[9] | Lu J, Qiu Y, Wang X, et al. Constructing dataset of classified drainage areas based on surface water-supply patterns in high mountain Asia[J]. Big Earth Data, 2020, 4(3): 225-241. |
[10] | Sharma S, Meyer M, Culpepper J, et al. Integrating perspectives to understand lake ice dynamics in a changing world[J]. Journal of Geophysical Research: Biogeosciences, 2020, 125(8): e2020JG005799, doi: 10.1029/2020G005799. |
[11] | Leppäranta M. Freezing of lakes and the evolution of their ice cover[M]. Berlin: Springer Science & Business Media, 2014: 245-269. |
[12] |
Sharma S, Blagrave K, Magnuson J, et al. Widespread loss of lake ice around the Northern Hemisphere in a warming world[J]. Nature Climate Change, 2019, 9(3): 227-231.
doi: 10.1038/s41558-018-0393-5 |
[13] | Woolway R, Kraemer B, Lenters J, et al. Global lake responses to climate change[J]. Nature Reviews Earth & Environment, 2020, 1(8): 388-403. |
[14] | Woolway R I, Merchant C J. Worldwide alteration of lake mixing regimes in response to climate change[J]. Nature: Geoscience, 2019, 12(4): 271-276. |
[15] | Kouraev A V, Semovski S V, Shimaraev M N, et al. Observations of Lake Baikal ice from satellite altimetry and radiometry[J]. Remote Sensing of Environment, 2007, 108(3): 240-253. |
[16] | Marszelewski W, Skowron. Ice cover as an indicator of winter air temperature changes: Case study of the Polish lowland lakes[J]. Hydrological Sciences Journal, 2006, 51(2): 336-349. |
[17] | 魏秋方, 叶庆华. 湖冰遥感监测方法综述[J]. 地理科学进展, 2010, 29(7): 803-810. |
[Wei Qiufang, Ye Qinghua. Review of lake ice monitoring by remote sensing[J]. Progress in Geography, 2010, 29(7): 803-810. ]
doi: 10.11820/dlkxjz.2010.07.005 |
|
[18] | Cai Y, Ke C Q, Duan Z. Monitoring ice variations in Qinghai Lake from 1979 to 2016 using passive microwave remote sensing data[J]. Science of the Total Environment, 2017, 607-608: 120-131. |
[19] | Che T, Li X, Jin R. Monitoring the frozen duration of Qinghai Lake using satellite passive microwave remote sensing low frequency data[J]. Chinese Science Bulletin, 2009, 54(13): 2294-2299. |
[20] | Ke C Q, Tao A Q, Jin X. Variability in the ice phenology of Nam Co Lake in central Tibet from scanning multichannel microwave radiometer and special sensor microwave/image: 1978 to 2013[J]. Journal of Applied Remote Sensing, 2013, 7(1): 073477, doi: 10.1117/1.JRS.7.073477. |
[21] | Howell S E L, Brown L C, Kang K K, et al. Variability in ice phenology on Great Bear Lake and Great Slave Lake, Northwest Territories, Canada, from SeaWinds/QuikSCAT: 2000—2006[J]. Remote Sensing of Environment, 2009, 113(4): 816-834. |
[22] | 柯长青, 蔡宇, 肖瑶. 1979年—2019年兴凯湖湖冰物候变化的被动微波遥感监测[J]. 遥感学报, 2022, 26(1): 201-210. |
[Ke Changqing, Cai Yu, Xiao Yao. Monitoring ice phenology variations in Khanka Lake based on passive remote sensing data from 1979 to 2019[J]. National Remote Sensing Bulletin, 2022, 26(1): 201-210. ] | |
[23] | Duguay C R, Lafleur P M. Estimating depth and ice thickness of shallow subarctic lakes using space borne optical and SAR data[J]. International Journal of Remote Sensing, 2003, 24(3): 475-489. |
[24] | Jeffries M O, Morris K, Weeks W F, et al. Structural and stratigraphic features and ERS 1 synthetic aperture radar back scatter characteristics of ice growing on shallow lakes in NW Alaska, winter 1991—1992[J]. Journal of Geophysical Research: Oceans, 1994, 99(C11): 22459-22471. |
[25] | Duguay C R, Pultz T J, Lafleur P M, et al. RADARSAT back scatter characteristics of ice growing on shallow subarctic lakes, Churchill, Manitoba, Canada[J]. Hydrological Processes, 2002, 16(8): 1631-1644. |
[26] | Geldsetzer T, Sanden J V D, Brisco B. Monitoring lake ice during spring melt using RADARSAT-2 SAR[J]. Canadian Journal of Remote Sensing, 2010, 36(Suppl. 2): S391-S400. |
[27] | Chaouch N, Temimi M, Romanov P, et al. An automated algorithm for river ice monitoring over the Susquehanna River using the MODIS data[J]. Hydrological Processes, 2014, 28(1): 62-73. |
[28] | Latifovic R, Pouliot D. Analysis of climate change impacts on lake ice phenology in Canada using the historical satellite data record[J]. Remote Sensing of Environment, 2007, 106(4): 492-507. |
[29] | 邰雪楠, 王宁练, 吴玉伟, 等. 近20 a色林错湖冰物候变化特征及其影响因素[J]. 湖泊科学, 2022, 34(1): 334-348. |
[Tai Xuenan, Wang Ninglian, Wu Yuwei, et al. Lake ice phenology variations and influencing factors of Selin Co from 2000 to 2020[J]. Journal of Lake Sciences, 2022, 34(1): 334-348. ] | |
[30] |
Yao X J, Li L, Zhao J, et al. Spatial-temporal variations of lake ice phenology in the Hoh Xil region from 2000 to 2011[J]. Journal of Geographical Sciences, 2016, 26: 70-82.
doi: 10.1007/s11442-016-1255-6 |
[31] | 吴艳红, 郭立男, 范兰馨, 等. 青藏高原纳木错湖冰物候变化遥感监测与模拟[J]. 遥感学报, 2022, 26(1): 193-200. |
[Wu Yanhong, Guo Linan, Fan Lanxin, et al. Lake ice phenology of the Nam Co at Tibetan Plateau: Remote sensing and modelling[J]. National Remote Sensing Bulletin, 2022, 26(1): 193-200. ] | |
[32] | 黄鑫, 焦黎, 马晓飞, 等. 基于RClimDex模型的近60 a中亚极端降水事件变化特征[J]. 干旱区地理, 2023, 46(7): 1039-1051. |
[Huang Xin, Jiao Li, Ma Xiaofei, et al. Change characteristics of extreme precipitation events in Central Asia in recent 60 years based on RClimDex model[J]. Arid Land Geography, 2023, 46(7): 1039-1051. ] | |
[33] | Che X, Feng M, Sun Q, et al. The decrease in lake numbers and areas in Central Asia investigated using a Landsat-derived water dataset[J]. Remote Sensing, 2021, 13(5): 1032, doi: 10.3390/rs13051032. |
[34] | Huang W, Duan W, Chen Y. Unravelling lake water storage change in Central Asia: Rapid decrease in tail-end lakes and increasing risks to water supply[J]. Journal of Hydrology, 2022, 614: 128546, doi: 10.1016/j.jhydrol.2022.128546. |
[35] | Hu Z, Zhang Z, Sang Y F, et al. Temporal and spatial variations in the terrestrial water storage across Central Asia based on multiple satellite datasets and global hydrological models[J]. Journal of Hydrology, 2021, 596: 126013, doi: 10.1016/j.jhydrol.2021.126013. |
[36] | 夏怀霞, 梁涵玮, 陈爽, 等. 中亚地区土地与人口城镇化时空耦合特征[J]. 干旱区地理, 2023, 46(1): 115-126. |
[Xia Huaixia, Liang Hanwei, Chen Shuang, et al. Spatiotemporal coupling of landscape-demographic urbanization in Central Asia[J]. Arid Land Geography, 2023, 46(1): 115-126. ] | |
[37] | 陈佳毅, 赵勇. 伊朗高原和北非感热异常对夏季塔里木盆地降水的影响[J]. 干旱区地理, 2022, 45(5): 1357-1369. |
[Chen Jiayi, Zhao Yong. Effects of sensible heat anomalies in the Iranian Plateau and North Africa on summer precipitation in the Tarim Basin[J]. Arid Land Geography, 2022, 45(5): 1357-1369. ] | |
[38] | 陈曦, 罗格平, 吴世新, 等. 中亚干旱区土地利用与土地覆被变化[M]. 北京: 科学出版社, 2015: 11-15. |
[Chen Xi, Luo Geping, Wu Shixin, et al. Land use and land cover change in the arid region of Central Asia[M]. Beijing: Science Press, 2015: 11-15. ] | |
[39] | 姚俊强, 曾勇, 李建刚, 等. 中亚区域干湿及极端降水研究综述[J]. 气象科技展, 2020, 10(4): 7-14. |
[Yao Junqiang, Zeng Yong, Li Jiangang, et al. A review of dry-wet climate change and extreme precipitation in Central Asia[J]. Advances in Meteorological Science and Technology, 2020, 10(4): 7-14. ] | |
[40] | 郭利丹, 周海炜, 夏自强, 等. 丝绸之路经济带建设中的水资源安全问题及对策[J]. 中国人口资源与环境, 2015, 25(5): 114-121. |
[Guo Lidan, Zhou Haiwei, Xia Ziqiang, et al. Water resources security and its countermeasure suggestions in building Silk Road Economic Belt[J]. China Population, Resources and Environment, 2015, 25(5): 114-121. ] | |
[41] | Bothe O, Fraedrich K, Zhu X. Precipitation climate of Central Asia and the large-scale atmospheric circulation[J]. Theoretical and Applied Climatology, 2012, 108: 345-354. |
[42] | Lehner B, Döll P. Development and validation of a global database of lakes, reservoirs and wetlands[J]. Journal of hydrology, 2004, 296(1-4): 1-22. |
[43] | 李均力, 陈曦, 包安明. 2003—2009年中亚地区湖泊水位变化的时空特征[J]. 地理学报, 2011, 66(9): 1219-1229. |
[Li Junli, Chen Xi, Bao Anming. Spatial-temporal characteristics of lake level changes in Central Asia during 2003—2009[J]. Acta Geographica Sinica, 2011, 66(9): 1219-1229. ] | |
[44] | 秦伯强. 近百年来亚洲中部内陆湖泊演变及其原因分析[J]. 湖泊科学, 1999, 11(1): 11-19. |
[Qin Baiqiang. A preliminary investigation of lake evolution in 20-century in inland mainland Asia with relation to the global warming[J]. Journal of Lake Sciences, 1999, 11(1): 11-19. ] | |
[45] | 黄秋霞, 赵勇, 何清. 基于CRU资料的中亚地区气候特征[J]. 干旱区研究, 2013, 30(3): 396-403. |
[Huang Qiuxia, Zhao Yong, He Qing. Climatic characteristics in Central Asia based on CRU data[J]. Arid Zone Research, 2013, 30(3): 396-403. ] | |
[46] | White C J, Tanton T W, Rycroft D W. The impact of climate change on the water resources of the Amu Darya Basin in Central Asia[J]. Water Resources Management, 2014, 28: 5267-5281. |
[47] |
吴其慧, 李畅游, 孙标, 等. 1986—2017年呼伦湖湖冰物候特征变化[J]. 地理科学进展, 2019, 38(12): 1933-1943.
doi: 10.18306/dlkxjz.2019.12.009 |
[Wu Qihui, Li Changyou, Sun Biao, et al. Change of ice phenology in the Hulun Lake from 1986 to 2017[J]. Progress in Geography, 2019, 38(12): 1933-1943. ]
doi: 10.18306/dlkxjz.2019.12.009 |
|
[48] | Kropáek J, Maussion F, Chen F, et al. Analysis of ice phenology of lakes on the Tibetan Plateau from MODIS data[J]. The Cryosphere, 2013, 7(1): 287-301. |
[49] | Reed B, Buddle M, Spencer P, et al. Integration of MODIS derived metrics to assess inter annual variability in snow-pack lake ice, and NDVI in Southwest Alaska[J]. Remote Sensing of Environment, 2009, 113(7): 1443-1452. |
[50] | Shen B, Wu J, Zhan S, et al. Spatial variations and controls on the hydrochemistry of surface waters across the Ili-Balkhash Basin, arid Central Asia[J]. Journal of Hydrology, 2021, 600: 126565, doi: 10.1016/j.jhydrol.2021.126565. |
[51] | Brown L C, Duguay C R. The response and role of ice cover in lake-climate interactions[J]. Progress in Physical Geography, 2010, 34(5): 671-704. |
[52] |
姚晓军, 李龙, 赵军, 等. 近10年来可可西里地区主要湖泊冰情时空变化[J]. 地理学报, 2015, 70(7): 1114-1124.
doi: 10.11821/dlxb201507008 |
[Yao Xiaojun, Li Long, Zhao Jun, et al. Spatial-temporal variations of lake ice in the Hoh Xil region from 2000 to 2011[J]. Acta Geographica Sinica, 2015, 70(7): 1114-1124. ]
doi: 10.11821/dlxb201507008 |
|
[53] | Cai Y, Ke C Q, Li X G, et al. Variations of lake ice phenology on the Tibetan Plateau from 2001 to 2017 based on MODIS data[J]. Journal of Geophysical Research: Atmospheres, 2019, 124(2): 825-843. |
[54] | Hou G, Yuan X, Wu S, et al. Phenological changes and driving forces of lake ice in Central Asia from 2002 to 2020[J]. Remote Sensing, 2022, 14(19): 4992, doi: 10.3390/rs14194992. |
[1] | WANG Shuzhi, WEN Deping. Attribution analysis of runoff change in the Datong River Basin, Qinghai-Tibet Plateau [J]. Arid Land Geography, 2024, 47(2): 203-213. |
[2] | CHANG Xuexiang, ZHAO Wenzhi, TIAN Quanyan. Advances in climate change and its impact on the stability of mountain forest ecosystems and hydrological processes in arid regions [J]. Arid Land Geography, 2024, 47(2): 228-236. |
[3] | SUI Lu, YAN Zhiming, LI Kaifang, HE Peien, MA Yingjie, ZHANG Rucui. Prediction of habitat quality in the Ili River Valley under the influence of human activities and climate change [J]. Arid Land Geography, 2024, 47(1): 104-116. |
[4] | LIU Wenli, CHEN Zhang, ZHAO Yong, LIANG Yuxin. Influences of soil moisture anomalies in May on June precipitation in Central Asia [J]. Arid Land Geography, 2024, 47(1): 38-47. |
[5] | TIAN Haowei, CHEN Fulong, LONG Aihua, LIU Jing, HAI Yang. Response and prediction of runoff to climate change in the headwaters of the Bortala River [J]. Arid Land Geography, 2023, 46(9): 1432-1442. |
[6] | AI Liya, WANG Yongfang, GUO Enliang, YIN Shan, GU Xiling. NDVI change and its influencing factors of Daqingshan National Nature Reserve based on GEE [J]. Arid Land Geography, 2023, 46(8): 1279-1290. |
[7] | HUANG Xin, JIAO Li, MA Xiaofei, WANG Yonghui, Aerman ABULA. Change characteristics of extreme precipitation events in Central Asia in recent 60 years based on RClimDex model [J]. Arid Land Geography, 2023, 46(7): 1039-1051. |
[8] | GAO Xiaoyu, HAO Haichao, ZHANG Xueqi, CHEN Yaning. Responses of vegetation water use efficiency to meteorological factors in arid areas of northwest China: A case of Xinjiang [J]. Arid Land Geography, 2023, 46(7): 1111-1120. |
[9] | GU Chaolin, SU Hefang, GU Jiang, GAO Zhe, CHEN Lelin, GUO Li. On the new era of earth science [J]. Arid Land Geography, 2023, 46(7): 1176-1195. |
[10] | CHEN Shujun,XU Guochang,LYU Zhiping,MA Mingyue,LI Hanyu,ZHU Yuyan. Spatiotemporal variations of fractional vegetation cover and its response to climate change and urbanization in China [J]. Arid Land Geography, 2023, 46(5): 742-752. |
[11] | LI Na,WU Yongli,ZHAO Guixiang,QIAN Jinxia,LI Fen,ZHAO Haiying,HAN Pu. Interannual variations of extreme air temperature events and its response to regional warming in Shanxi Province in recent 60 years [J]. Arid Land Geography, 2023, 46(3): 337-348. |
[12] | REN Taotao,LI Shuangshuang,DUAN Keqin,HE Jinping. Spatiotemporal variation characteristics and influencing factors of heat wave and precipitation deficit flash drought in the Loess Plateau [J]. Arid Land Geography, 2023, 46(3): 360-370. |
[13] | JIN Zizhen, QIN Xiang, ZHAO Qiudong, LI Yanzhao, LIU Yushuo, CHEN Jizu, WANG Lihui, WANG Qiang. Characteristics of runoff variation during ablation season in Laohugou watershed of western Qilian Mountains [J]. Arid Land Geography, 2023, 46(2): 178-190. |
[14] | WANG Zichao, WANG Chunlei, MA Junjun. Estimation of downward surface longwave radiation in Heihe River Basin with remotely sensed data [J]. Arid Land Geography, 2023, 46(2): 243-252. |
[15] | XIA Huaixia, LIANG Hanwei, CHEN Shuang, WANG Qian, WANG Shenmin. Spatiotemporal coupling of landscape-demographic urbanization in Central Asia [J]. Arid Land Geography, 2023, 46(1): 115-126. |
|