Arid Land Geography ›› 2023, Vol. 46 ›› Issue (9): 1432-1442.doi: 10.12118/j.issn.1000-6060.2022.555
• Climatology and Hydrology • Previous Articles Next Articles
TIAN Haowei1,2(),CHEN Fulong1,LONG Aihua1,2(),LIU Jing2,3,HAI Yang2
Received:
2022-10-24
Revised:
2022-12-14
Online:
2023-09-25
Published:
2023-09-28
TIAN Haowei, CHEN Fulong, LONG Aihua, LIU Jing, HAI Yang. Response and prediction of runoff to climate change in the headwaters of the Bortala River[J].Arid Land Geography, 2023, 46(9): 1432-1442.
Tab. 2
Basic information of CMIP5 global climate models"
编号 | CMIP5模式 | 所属国家 | 所属机构 | 水平 分辨率 |
---|---|---|---|---|
1 | ACCESS1-0 | 澳大利亚 | CSIRO-BOM | 1.9°×1.2° |
2 | ACCESS1-3 | 澳大利亚 | CSIRO-BOM | 1.9°×1.2° |
3 | NRM-CM5 | 法国 | CNRM-CERFACS | 1.4°×1.4° |
4 | HadGEM2-CC | 英国 | MOHC | 1.9°×1.2° |
5 | HadGEM2-ES | 英国 | MOHC | 1.9°×1.2° |
6 | MIROC5 | 日本 | MIROC | 1.4°×1.4° |
7 | MRI-CGCM3 | 日本 | MRI | 1.1°×1.1° |
8 | BCC-CSM1-1-M | 中国 | NCC | 1.1°×1.1° |
Tab. 3
Parameter calibration results"
参数模块 | 参数 | 物理意义 | 范围 | 参数最优值 |
---|---|---|---|---|
径流 | ALPHA_BF.gw | 基流α因子/d | [0, 1] | 0.0084 |
GW_DELAY.gw | 地下水的时间延迟/d | [0, 500] | 120.00 | |
GWQMIN.gw | 发生回归流所需的浅水层的水位阈值/mm | [0, 5000] | 100.00 | |
REVAPMN.gw | 渗入深水层所需的含水层的水位阈值/mm | [0, 1000] | 1000.00 | |
CH_K2.rte | 主河道冲积物的有效渗透系数/mm·h-1 | [0, 500] | 30.00 | |
ESCO.hru | 土壤蒸发补偿因子 | [0, 1] | 0.70 | |
融雪 | SFTMP.bsn | 降雪气温/℃ | [-5, 5] | 1.00 |
SMTMP.bsn | 融雪气温/℃ | [-5, 5] | 0.50 | |
SMFMX.bsn | 6月21日的融雪因子/mm·℃-1·d-1 | [0, 10] | 6.50 | |
SMFMN.bsn | 12月21日的融雪因子/mm·℃-1·d-1 | [0, 10] | 1.50 | |
TIMP.bsn | 积雪温度滞后因子 | [0.01, 1.00] | 1.00 | |
冰川 | Bmelt6 | 6月21日的融冰因子/mm·℃-1·d-1 | [1.4, 16.0] | 3.50 |
Bmelt12 | 12月21日的融冰因子/mm·℃-1·d-1 | [1.4, 16.0] | 0.50 | |
gmlt_tmp | 融冰温度阈值/℃ | [-5, 5] | 1.44 |
Tab. 5
Comparison and analysis of abrupt changes in historical hydrological data"
历史 | 春季 | 夏季 | |||||
---|---|---|---|---|---|---|---|
降水 | 气温 | 径流 | 降水 | 气温 | 径流 | ||
降水量 | 1.000 | 0.541** | 0.013 | 1.000 | -0.143 | 0.178* | |
气温 | 0.541** | 1.000 | -0.237** | -0.143 | 1.000 | 0.503** | |
径流 | 0.013 | -0.237 | 1.000 | 0.178* | 0.503** | 1.000 | |
历史 | 秋季 | 冬季 | |||||
降水 | 气温 | 径流 | 降水 | 气温 | 径流 | ||
降水量 | 1.000 | 0.360** | 0.178* | 1.000 | 0.253** | 0.017 | |
气温 | 0.360** | 1.000 | -0.173* | 0.253** | 1.000 | -0.060 | |
径流 | 0.178* | -0.173 | 1.000 | 0.017 | -0.060 | 1.000 |
Tab. 6
Correlation coefficients of runoff, temperature and precipitation in RCP4.5 scenario model"
RCP4.5 | 春季 | 夏季 | |||||
---|---|---|---|---|---|---|---|
降水 | 气温 | 径流 | 降水 | 气温 | 径流 | ||
降水 | 1.000 | 0.704** | 0.321** | 1.000 | -0.004 | -0.120 | |
气温 | 0.704** | 1.000 | 0.486** | -0.004 | 1.000 | 0.733** | |
径流 | 0.321** | 0.486** | 1.000 | -0.120 | 0.733** | 1.000 | |
RCP4.5 | 秋季 | 冬季 | |||||
降水 | 气温 | 径流 | 降水 | 气温 | 径流 | ||
降水 | 1.000 | 0.004 | 0.103 | 1.000 | 0.124 | -0.062 | |
气温 | 0.004 | 1.000 | 0.028 | 0.124 | 1.000 | 0.042 | |
径流 | 0.103 | 0.028 | 1.000 | -0.062 | 0.042 | 1.000 |
Tab. 7
Correlation coefficients of runoff, temperature and precipitation in RCP8.5 scenario model"
RCP8.5 | 春季 | 夏季 | |||||
---|---|---|---|---|---|---|---|
降水 | 气温 | 径流 | 降水 | 气温 | 径流 | ||
降水 | 1.000 | 0.641** | 0.236** | 1.000 | -0.395** | -0.155 | |
气温 | 0.641** | 1.000 | 0.540** | -0.395** | 1.000 | 0.870** | |
径流 | 0.236** | 0.540** | 1.000 | -0.155 | 0.870** | 1.000 | |
RCP8.5 | 秋季 | 冬季 | |||||
降水 | 气温 | 径流 | 降水 | 气温 | 径流 | ||
降水 | 1.000 | -0.135 | -0.045 | 1.000 | 0.261* | 0.142 | |
气温 | -0.135 | 1.000 | 0.203 | 0.261* | 1.000 | 0.113 | |
径流 | -0.045 | 0.203 | 1.000 | 0.142 | 0.113 | 1.000 |
[1] | 姜大膀, 王娜. IPCC AR6报告解读:水循环变化[J]. 气候变化研究进展, 2021, 17(6): 699-704. |
[Jiang Dabang, Wang Na. Water cycle changes: Interpretation of IPCC AR6[J]. Climate Change Research, 2021, 17(6): 699-704.] | |
[2] | 陈亚宁, 李稚, 方功焕. 中亚天山地区关键水文要素变化与水循环研究进展[J]. 干旱区地理, 2022, 45(1): 1-8. |
[Chen Yaning, Li Zhi, Fang Gonghuan. Changes of key hydrological elements and research progress of water cycle in the Tianshan Mountains, Central Asia[J]. Arid Land Geography, 2022, 45(1): 1-8.] | |
[3] | 王文, 马骏. 若干水文预报方法综述[J]. 水利水电科技进展, 2005(1): 56-60. |
[Wang Wen, Ma Jun. Review on some methods for hydrological forecasting[J]. Advances in Science and Technology of Water, 2005(1): 56-60.] | |
[4] | 雷晓辉, 王浩, 廖卫红, 等. 变化环境下气象水文预报研究进展[J]. 水利学报, 2018, 49(1): 9-18. |
[Lei Xiaohui, Wang Hao, Liao Weihong, et al. Advance in hydro-meteorological forecast under changing environment[J]. Journal of Hydraulic Engineering, 2018, 49(1): 9-18.] | |
[5] | 史晓亮, 杨志勇, 严登华, 等. 滦河流域土地利用/覆被变化的水文响应[J]. 水科学进展, 2014, 25(1): 21-27. |
[Shi Xiaoliang, Yang Zhiyong, Yan Denghua, et al. On hydrological response to land-use/cover change in Luanhe River Basin[J]. Advances in Water Science, 2014, 25(1): 21-27.] | |
[6] |
包鑫, 江燕. 半干旱半湿润地区流域非点源污染负荷模型研究进展[J]. 应用生态学报, 2020, 31(2): 674-684.
doi: 10.13287/j.1001-9332.202002.039 |
[Bao Xin, Jiang Yan. Research progress on non-point source pollution models for semi-arid and semi-humid watersheds[J]. Chinese Journal of Applied Ecology, 2020, 31(2): 674-684.]
doi: 10.13287/j.1001-9332.202002.039 |
|
[7] |
Fabre C, Sauvage S, Tananaev N, et al. Assessment of sediment and organic carbon exports into the Arctic Ocean: The case of the Yenisei River Basin[J]. Water Research, 2019, 158: 118-135.
doi: S0043-1354(19)30326-4 pmid: 31022529 |
[8] | 孙占东, 黄群. 长江流域土地利用/覆被变化的大尺度水文效应[J]. 长江流域资源与环境, 2019, 28(11): 2703-2710. |
[Sun Zhandong, Huang Qun. Land use-cover change and its large scale hydrological effects in Yangtze River Basin[J]. Resources and Environment in the Yangtze Basin, 2019, 28(11): 2703-2710.] | |
[9] | 周帅, 王义民, 郭爱军, 等. SWAT模型参数不确定性对黄河上游径流模拟的影响[J]. 西北农林科技大学学报(自然科学版), 2019, 47(8): 144-154. |
[Zhou Shuai, Wang Yimin, Guo Aijun, et al. Influence of uncertainties in SWAT model parmeters on runoff simulation in upper reaches of the Yellow River[J]. Journal of Northwest A & F University (Natural Science Edition), 2019, 47(8): 144-154.] | |
[10] | Avellaneda P M, Ficklin D L, Lowry C S, et al. Improving hydrological models with the assimilation of crowdsourced data[J]. Water Resources Research, 2020, 56(5): e2019WR026325, doi: 10.1029/2019WR026325. |
[11] | 任才, 龙爱华, 於嘉闻, 等. 气候与下垫面变化对叶尔羌河源流径流的影响[J]. 干旱区地理, 2021, 44(5): 1373-1383. |
[Ren Cai, Long Aihua, Yu Jiawen, et al. Effects of climate and underlying surface changes on runoff of Yarkant River source[J]. Arid Land Geography, 2021, 44(5): 1373-1383.] | |
[12] | Shukla S, Jain S K, Kansal M L. Hydrological modelling of a snow/glacier-fed western Himalayan Basin to simulate the current and future streamflows under changing climate scenarios[J]. Science of the Total Environment, 2021, 795, doi: 10.1016/J.SCITOTENV.2021.148871. |
[13] | Cao Y, Fu C S, Wang X, et al. Decoding the dramatic hundred-year water level variations of a typical great lake in semi-arid region of northeastern Asia[J]. Science of the Total Environment, 2021, 770, doi: 10.1016/J.SCITOTENV.2021.145353. |
[14] | Zhao H L, Li H Y, Xuan Y Q, et al. Improvement of the SWAT model for snowmelt runoff simulation in seasonal snowmelt area using remote sensing data[J]. Remote Sensing, 2022, 14(22): 5823, doi: 10.3390/RS14225823. |
[15] | 杨明智, 许继军, 桑连海, 等. 基于水循环的分布式水资源调配模型开发与应用[J]. 水利学报, 2022, 53(4): 456-470. |
[Yang Mingzhi, Xu Jijun, Sang Lianhai, et al. Development and application of the distributed water resources allocation and regulation model based on hydrological cycle[J]. Journal of Hydraulic Engineering, 2022, 53(4): 456-470.] | |
[16] | Yin Z L, Feng Q, Liu S Y, et al. The spatial and temporal contribution of glacier runoff to watershed discharge in the Yarkant River Basin, northwest China[J]. Water, 2017, 9(3): 159, doi: 10.3390/w9030159. |
[17] | 孟现勇, 王浩, 雷晓辉, 等. 基于CMDAS驱动SWAT模式的精博河流域水文相关分量模拟、验证及分析[J]. 生态学报, 2017, 37(21): 7114-7127. |
[Meng Xianyong, Wang Hao, Lei Xiaohui, et al. Simulation, validation, and analysis of the hydrological components of Jing and Bo River Basin based on the SWAT model driven by CMADS[J]. Acta Ecologica Sinica, 2017, 37(21): 7114-7127.] | |
[18] | 王瑾杰, 丁建丽, 张喆, 等. 干旱区降雨、融雪混合补给下的径流模拟研究——以博尔塔拉河上游流域为例[J]. 干旱区地理, 2016, 39(6): 1238-1246. |
[Wang Jinjie, Ding Jianli, Zhang Zhe, et al. Simulation of runoff of arid area with rainfall and snowmelt based on GF-1 satellite: A case of Bortala River[J]. Arid Land Geography, 2016, 39(6): 1238-1246.] | |
[19] |
张飞, 王维维, 辛红云, 等. 新疆艾比湖流域河湖水质变化(2005—2020年)[J]. 湖泊科学, 2022, 34(2): 478-495.
doi: 10.18307/2022.0210 |
[Zhang Fei, Wang Weiwei, Xin Hongyun, et al. Changes of river and lakes water quality in Lake Ebinur Basin, Xinjiang (2005—2020)[J]. Journal of Lake Sciences, 2022, 34(2): 478-495.]
doi: 10.18307/2022.0210 |
|
[20] | 丁启振, 雷米, 周金龙, 等. 博尔塔拉河上游河谷地区水化学特征及水质评价[J]. 干旱区研究, 2022, 39(3): 829-840. |
[Ding Qizhen, Lei Mi, Zhou Jinlong, et al. An assessment of groundwater, surface water, and hydrochemical characteristics in the upper valley of the Bortala River[J]. Arid Zone Research, 2022, 39(3): 829-840.] | |
[21] | 刘世薇, 周华荣, 梁雪琼, 等. 艾比湖流域降水与径流变化特征分析[J]. 水土保持学报, 2011, 25(5): 21-25. |
[Liu Shiwei, Zhou Huarong, Liang Xueqiong, et al. Trend analysis of the precipitation and runoff in Ebinur Lake Basin[J]. Journal of Soil and Water Conservation, 2011, 25(5): 21-25.] | |
[22] | 郝帅, 李发东, 李艳红, 等. 艾比湖流域降水、地表水和地下水稳定同位素特征[J]. 干旱区地理, 2021, 44(4): 934-942. |
[Hao Shuai, Li Fadong, Li Yanhong, et al. Stable isotopes characteristics of precipitation, surface water and groundwater in Ebinur Lake Basin[J]. Arid Land Geography, 2021, 44(4): 934-942.] | |
[23] |
甘容, 徐孟莎, 左其亭. 伊洛河流域基流分割及其时空变化特征[J]. 资源科学, 2022, 44(9): 1824-1834.
doi: 10.18402/resci.2022.09.07 |
[Gan Rong, Xu Mengsha, Zuo Qiting. Baseflow separation and spatiotemporal variation characteristics in the Yiluo River Basin[J]. Resources Science, 2022, 44(9): 1824-1834.]
doi: 10.18402/resci.2022.09.07 |
|
[24] | 张田田, 陈有超, 李潜, 等. 土地利用变化对丹江流域径流和泥沙时空格局的影响[J]. 长江流域资源与环境, 2022, 31(8): 1797-1811. |
[Zhang Tiantian, Chen Youchao, Li Qian, et al. Effects of land-use change on the spatio-temporal patterns of runoff and sediment in the Danjiang River Basin[J]. Resources and Environment in the Yangtze Basin, 2022, 31(8): 1797-1811.] | |
[25] |
侯玥, 徐成东, 刘伟, 等. 气候变化情景下淮河上游流域氮排放预测研究[J]. 地球信息科学学报, 2022, 24(8): 1558-1574.
doi: 10.12082/dqxxkx.2022.210546 |
[Hou Yue, Xu Chengdong, Liu Wei, et al. Prediction of nitrogen emission in the upper reaches of the Huai River Basin under climate change scenarios[J]. Journal of Geo-information Science, 2022, 24(8): 1558-1574.]
doi: 10.12082/dqxxkx.2022.210546 |
|
[26] | 孙瑞, 张雪芹. 基于SWAT模型的流域径流模拟研究进展[J]. 水文, 2010, 30(3): 28-32, 47. |
[Sun Rui, Zhang Xueqin. Progress in application of watershed runoff simulation based on SWAT[J]. Journal of China Hydrology, 2010, 30(3): 28-32, 47.] | |
[27] | 魏潇娜, 龙爱华, 尹振良, 等. 和田河流域冰川径流对气候变化响应的模拟分析[J]. 水资源保, 2022, 38(4): 137-144. |
[Wei Xiaona, Long Aihua, Yin Zhenliang, et al. Simulation of response of glacier runoff to climate change in the Hotan River Basin[J]. Water Resources Protection, 2022, 38(4): 137-144.] | |
[28] | Liu J, Long A H, Deng X Y, et al. The impact of climate change on hydrological processes of the glacierized watershed and projections[J]. Remote Sensing, 2022, 14(6): 1314, doi: 10.3390/rs14061314. |
[29] | Moriasi D N, Arnold J G, Liew M, et al. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations[J]. Transactions of the ASABE, 2007, 50(3): 855-900. |
[30] | Mehrotra R, Sharma A. A robust alternative for correcting systematic biases in multi-variable climate model simulations[J]. Environmental Modelling and Software, 139, 105019, doi:10.1016/j.envsoft.2021.105019. |
[31] | 吴佳, 周波涛, 徐影. 中国平均降水和极端降水对气候变暖的响应: CMIP5模式模拟评估和预估[J]. 地球物理学报, 2015, 58(9): 3048-3060. |
[Wu Jia, Zhou Botao, Xu Ying. Response of precipitation and its extremes over China to warming: CMIP5 simulation and projection[J]. Chinese Journal of Geophysics, 2015, 58(9): 3048-3060.] | |
[32] | 马占云, 任佳雪, 陈海涛, 等. IPCC第一工作组评估报告分析及建议[J]. 环境科学研究, 2022, 35(11): 2550-2558. |
[Ma Zhanyun, Ren Jiaxue, Chen Haitao, et al. Analysis and recommendations of IPCC working group I assessment report[J]. Research of Environmental Sciences, 2022, 35(11): 2550-2558.] | |
[33] |
Zhang Q, Yang J H, Wang W, et al. Climatic warming and humidification in the arid region of northwest China: Multi-scale characteristics and impacts on ecological vegetation[J]. Journal of Meteorological Research, 2021, 35(1): 113-127.
doi: 10.1007/s13351-021-0105-3 |
[34] | 迪丽努尔·阿吉, 近藤昭彦, 肖開提·阿吉, 等. 博河流域气候变化及其与径流量的关系研究[J]. 资源科学, 2014, 36(10): 2123-2130. |
[Aji Dilinuer, Akihiko Kondoh, Aji Xiaokaiti, et al. Climatic change in the Bortala River Basin and runoff volume[J]. Resources Science, 2014, 36(10): 2123-2130.] | |
[35] |
Kraaijenbrink P D A, Bierkens M F P, Lutz A F, et al. Impact of a global temperature rise of 1.5 degrees Celsius on Asia’s glaciers[J]. Nature, 2017, 549(7671): 257-260.
doi: 10.1038/nature23878 |
[36] | 曾庆江. 博尔塔拉谷地对径流的调节作用[J]. 干旱区地理, 1994, 17(4): 9-14. |
[Zeng Qingjiang. Regulation of Bortala valley on runoff[J]. Arid Land Geography, 1994, 17(4): 9-14.] | |
[37] |
赵求东, 赵传成, 秦艳, 等. 天山南坡高冰川覆盖率的木扎提河流域水文过程对气候变化的响应[J]. 冰川冻土, 2020, 42(4): 1285-1298.
doi: 10.7522/j.issn.1000-0240.2020.0016 |
[Zhao Qiudong, Zhao Chuancheng, Qin Yan, et al. Response of the hydrological processes to climate change in the Muzati River Basin with high glacierization, southern slope of the Tianshan Mountains[J]. Journal of Glaciology and Geocryology, 2020, 42(4): 1285-1298.]
doi: 10.7522/j.issn.1000-0240.2020.0016 |
[1] | SUI Lu, YAN Zhiming, LI Kaifang, HE Peien, MA Yingjie, ZHANG Rucui. Prediction of habitat quality in the Ili River Valley under the influence of human activities and climate change [J]. Arid Land Geography, 2024, 47(1): 104-116. |
[2] | AI Liya, WANG Yongfang, GUO Enliang, YIN Shan, GU Xiling. NDVI change and its influencing factors of Daqingshan National Nature Reserve based on GEE [J]. Arid Land Geography, 2023, 46(8): 1279-1290. |
[3] | GAO Xiaoyu, HAO Haichao, ZHANG Xueqi, CHEN Yaning. Responses of vegetation water use efficiency to meteorological factors in arid areas of northwest China: A case of Xinjiang [J]. Arid Land Geography, 2023, 46(7): 1111-1120. |
[4] | GU Chaolin, SU Hefang, GU Jiang, GAO Zhe, CHEN Lelin, GUO Li. On the new era of earth science [J]. Arid Land Geography, 2023, 46(7): 1176-1195. |
[5] | CHEN Shujun,XU Guochang,LYU Zhiping,MA Mingyue,LI Hanyu,ZHU Yuyan. Spatiotemporal variations of fractional vegetation cover and its response to climate change and urbanization in China [J]. Arid Land Geography, 2023, 46(5): 742-752. |
[6] | LI Na,WU Yongli,ZHAO Guixiang,QIAN Jinxia,LI Fen,ZHAO Haiying,HAN Pu. Interannual variations of extreme air temperature events and its response to regional warming in Shanxi Province in recent 60 years [J]. Arid Land Geography, 2023, 46(3): 337-348. |
[7] | REN Taotao,LI Shuangshuang,DUAN Keqin,HE Jinping. Spatiotemporal variation characteristics and influencing factors of heat wave and precipitation deficit flash drought in the Loess Plateau [J]. Arid Land Geography, 2023, 46(3): 360-370. |
[8] | JIN Zizhen, QIN Xiang, ZHAO Qiudong, LI Yanzhao, LIU Yushuo, CHEN Jizu, WANG Lihui, WANG Qiang. Characteristics of runoff variation during ablation season in Laohugou watershed of western Qilian Mountains [J]. Arid Land Geography, 2023, 46(2): 178-190. |
[9] | CAO Xiaoyun,XIAO Jianshe,HAO Xiaohua,SHI Feifei,LIU Zhiyuan,LI Suyun. Variation of snow cover days and topographic differentiation in Sanjiangyuan area from 2001 to 2020 [J]. Arid Land Geography, 2022, 45(5): 1370-1380. |
[10] | LIANG Pengfei,XIN Huijuan,LI Zongxing,ZHANG Baijuan,GUI Juan,DUAN Ran,NAN Fusen,DINGZENG Yangping,YANG Shengmei. Runoff variation characteristics and influencing factors in the Heihe River Basin in the Qilian Mountains [J]. Arid Land Geography, 2022, 45(5): 1460-1471. |
[11] | HU Keke,HE Jiancun,ZHAO Jian,SU Litan,ZHANG Yin. Ecological base flow in Niya River Basin under climate change [J]. Arid Land Geography, 2022, 45(5): 1472-1480. |
[12] | SU Yue,ZHANG Cunhou, Amuersana,LI Ke. Response of seasonal frozen soil to climate change on a typical steppe of Inner Mongolia during 1981—2018 [J]. Arid Land Geography, 2022, 45(3): 684-694. |
[13] | HUANG Ying,YANG Jianling,LI Xin,CUI Yang,MA Yang,ZHANG Wen. Climate change characteristics and circulation anomaly causes of the first frost date in Ningxia based on ground temperature [J]. Arid Land Geography, 2022, 45(2): 359-369. |
[14] | WANG Yaqin,YANG Haimei,FAN Wenbo,XU Zhongyu,QIAO Changlu. Migration characteristics of wind erosion climate erosivity and its influencing factors in Xinjiang in recent 50 years [J]. Arid Land Geography, 2022, 45(2): 370-378. |
[15] | CHEN Yaning,LI Zhi,FANG Gonghuan. Changes of key hydrological elements and research progress of water cycle in the Tianshan Mountains, Central Asia [J]. Arid Land Geography, 2022, 45(1): 1-8. |
|