[1] |
陈艳, 吴睿, 马月伟, 等. 典型喀斯特地区生境质量的时空分异与模拟研究[J]. 生态与农村环境学报, 2022, 38(12): 1593-1603.
|
|
[Chen Yan, Wu Rui, Ma Yuewei, et al. Spatial and temporal differentiation and simulation of habitat quality in typical karst areas[J]. Journal of Ecology and Rural Environment, 2022, 38(12): 1593-1603.]
|
[2] |
喻忠磊, 张文新, 梁进社, 等. 国土空间开发建设适宜性评价研究进展[J]. 地理科学进展, 2015, 34(9): 1107-1122.
doi: 10.18306/dlkxjz.2015.09.004
|
|
[Yu Zhonglei, Zhang Wenxin, Liang Jinshe, et al. Progress in evaluating suitability of spatial development and construction land[J]. Progress in Geography, 2015, 34(9): 1107-1122.]
doi: 10.18306/dlkxjz.2015.09.004
|
[3] |
王超, 常勇, 侯西勇, 等. 基于土地利用格局变化的胶东半岛生境质量时空演变特征研究[J]. 地球信息科学学报, 2021, 23(10): 1809-1822.
doi: 10.12082/dqxxkx.2021.190545
|
|
[Wang Chao, Chang Yong, Hou Xiyong, et al. Temporal and spatial evolution characteristics of habitat quality in Jiaodong Peninsula based on changes of land use pattern[J]. Journal of Geo-information Science, 2021, 23(10): 1809-1822.]
doi: 10.12082/dqxxkx.2021.190545
|
[4] |
张晓璐, 王晓欣, 华丽娟, 等. 新疆温度和降水变化的CMIP6模式预估[J]. 大气科学, 2023, 47(2): 387-398.
|
|
[Zhang Xiaolu, Wang Xiaoxin, Hua Lijuan, et al. Projections of temperature and precipitation over Xinjiang based on CMIP6 models[J]. Chinese Journal of Atmospheric Sciences, 2023, 47(2): 387-398.]
|
[5] |
陈竹安, 刘子强, 张立亭, 等. 南昌市LUCC多情景模拟和生境质量时空演变与预测[J]. 农业机械学报, 2023, 54(5): 170-180.
|
|
[Chen Zhu’an, Liu Ziqiang, Zhang Liting, et al. Multi-scenario simulation of LUCC and spatio-temporal evolution and prediction of habitat quality in Nanchang[J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(5): 170-180.]
|
[6] |
冀泳帆, 贾鲁净, 杨联安, 等. 耦合InVEST-PLUS模型的榆林市生境质量时空演变及预测分析[J]. 水土保持学报, 2023, 37(1): 123-132.
|
|
[Ji Yongfan, Jia Lujing, Yang Lian’an, et al. Spatio-temporal evolution and prediction analysis of habitat ouality in Yulin City coupled with InVEST-PLUS model[J]. Journal of Soil and Water Conservation, 2023, 37(1): 123-132.]
|
[7] |
冯文彬, 林媚珍, 龚建周, 等. 基于FLUS-InVEST模型的中山市生境质量时空分异特征[J]. 生态科学, 2022, 41(3): 16-23.
|
|
[Feng Wenbin, Lin Meizhen, Gong Jianzhou, et al. Spatiotemporal differentiation of habitat quality in Zhongshan City based on FLUS-InVEST model[J]. Ecological Science, 2022, 41(3): 16-23.]
|
[8] |
胡丰, 张艳, 郭宇, 等. 基于PLUS和InVEST模型的渭河流域土地利用与生境质量时空变化及预测[J]. 干旱区地理, 2022, 45(4): 1125-1136.
|
|
[Hu Feng, Zhang Yan, Guo Yu, et al. Spatial and temporal changes in land use and habitat quality in the Weihe River Basin based on the PLUS and InVEST models and predictions[J]. Arid Land Geography, 2022, 45(4): 1125-1136.]
|
[9] |
唐娇娇, 余成, 张委伟, 等. 基于CLUE-S和InVEST模型的苏州市生境质量评估及预测[J]. 环境工程技术学报, 2023, 13(1): 377-385.
|
|
[Tang Jiaojiao, Yu Cheng, Zhang Weiwei, et al. Habitat quality assessment and prediction in Suzhou based on CLUE-S and InVEST models[J]. Journal of Environmental Engineering Technology, 2023, 13(1): 377-385.]
|
[10] |
万辛如, 程超源, 白德凤, 等. 气候变化的生态影响及适应对策[J]. 中国科学院院刊, 2023, 38(3): 518-527.
|
|
[Wan Xinru, Cheng Chaoyuan, Bai Defeng, et al. Ecological impacts of climate change and adaption strategies[J]. Bulletin of Chinese Academy of Sciences, 2023, 38(3): 518-527.]
|
[11] |
隋露, 蒲春玲, 刘志有, 等. 基于PLUS模型的乌鲁木齐市生态服务价值权衡协同探究[J]. 干旱区地理, 2023, 46(1): 159-168.
|
|
[Sui Lu, Pu Chunling, Liu Zhiyou, et al. Trade-off synergy of ecosystem service value in Urumqi City based on PLUS model[J]. Arid Land Geography, 2023, 46(1): 159-168.]
|
[12] |
Wang Z Y, Li X, Mao Y T, et al. Dynamic simulation of land use change and assessment of carbon storage based on climate change scenarios at the city level: A case study of Bortala, China[J]. Ecological Indicators, 2022, 134: 108499, doi: 10.1016/j.ecolind.2021.108499.
|
[13] |
胡烨婷, 李天宏. 基于SD-CA模型的快速城市化地区土地利用空间格局变化预测[J]. 北京大学学报(自然科学版), 2022, 58(2): 372-382.
|
|
[Hu Yeting, Li Tianhong. Forecasting spatial pattern of land use change in rapidly urbanized regions based on SD-CA model[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2022, 58(2): 372-382.]
|
[14] |
Wu J, Luo J, Zhang H, et al. Projections of land use change and habitat quality assessment by coupling climate change and development patterns[J]. Science of the Total Environment, 2022, 847: 157491, doi: 10.1016/j.scitotenv.2022.157491.
|
[15] |
崔文兵, 侯国博, 陈万基, 等. 基于多情景模拟的伊犁河谷土地利用景观格局分析[J]. 水利水电技术, 2023, 54(9): 1-12.
|
|
[Cui Wen- bing, Hou Guobo, Chen Wanji, et al. Landscape pattern analysis of land use in Yili River Valley based on multi-scenario simulation[J]. Water Resources and Hydropower Engineering, 2023, 54(9): 1-12.
|
[16] |
陈月娇, 李祥, 王月健, 等. 尺度整合视角下伊犁河谷地区生态安全格局构建——以昭苏县为例[J]. 生态学报, 2023, 43(19): 1-12.
doi: 10.1016/j.chnaes.2021.07.007
|
|
[Chen Yuejiao, Li Xiang, Wang Yuejian, et al. Construction of ecological security pattern in Ili River Valley from the perspective of scale integration: A case study of Zhaosu County[J]. Acta Ecologica Sinica, 2023, 43(19): 1-12.]
doi: 10.1016/j.chnaes.2021.07.007
|
[17] |
刘天弋, 孙慧兰, 卢宝宝, 等. 1998—2018年新疆伊犁河谷植被覆盖度时空变化及驱动力[J]. 东北林业大学学报, 2023, 51(4): 68-74, 79.
|
|
[Liu Tianyi, Sun Huilan, Lu Baobao, et al. Spatial-temporal variation and driving force analysis of vegetation coverage in the Ili River Valley of Xinjiang from 1998 to 2018[J]. Journal of Northeast Forestry University, 2023, 51(4): 68-74, 79.]
|
[18] |
史名杰, 武红旗, 贾宏涛, 等. 基于MCE-CA-Markov和InVEST模型的伊犁谷地碳储量时空演变及预测[J]. 农业资源与环境学报, 2021, 38(6): 1010-1019.
|
|
[Shi Mingjie, Wu Hongqi, Jia Hongtao, et al. Temporal and spatial evolution and prediction of carbon stocks in Yili Valley based on MCE-CA-Markov and InVEST models[J]. Journal of Agricultural Resources and Environment, 2021, 38(6): 1010-1019.]
|
[19] |
姜彤, 苏布达, 王艳君, 等. 共享社会经济路径(SSPs)人口和经济格点化数据集[J]. 气候变化研究进展, 2022, 18(3): 381-383.
|
|
[Jiang Tong, Su Buda, Wang Yanjun, et al. Gridded datasets for population and economy under shared socioeconomic pathways for 2020—2100[J]. Climate Change Research, 2022, 18(3): 381-383.]
|
[20] |
Wang K C, Wang C, Cai W J, et al. Projected provincial urbanization rate for China[J]. Scientific Data, 2020, 83(7): 421, doi: 10.1038/s41597-020-0421-y.
|
[21] |
田贺, 梁迅, 黎夏, 等. 基于SD模型的中国2010—2050年土地利用变化情景模拟[J]. 热带地理, 2017, 37(3): 547-561.
|
|
[Tian He, Liang Xun, Li Xia, et al. Simulating multiple land use scenarios in China during 2010—2050 based on system dynamic model[J]. Tropical Geography, 2017, 37(3): 547-561.]
|
[22] |
Zhang P, Liu L, Yang L W, et al. Exploring the response of ecosystem service value to land use changes under multiple scenarios coupling a mixed-cell cellular automata model and system dynamics model in Xi’an, China[J]. Ecological Indicators, 2023, 147: 110009, doi: 10.1016/j.ecolind.2023.110009.
|
[23] |
Liang X, Guan Q, Clarke K C, et al. Understanding the drivers of sustainable land expansion using a patch-generating land use simulation (PLUS) model: A case study in Wuhan, China[J]. Computers, Environment and Urban Systems, Pergamon, 2021, 85: 101569, doi: 10.1016/j.compenvurbsys.2020.101569.
|
[24] |
Li C, Wu Y, Gao B, et al. Multi-scenario simulation of ecosystem service value for optimization of land use in the Sichuan-Yunnan ecological barrier, China[J]. Ecological Indicators, 2021, 132: 108328, doi: 10.1016/j.ecolind.2021.0108328.
|
[25] |
周嘉月, 卢麾, 阳坤, 等. 基于CMIP6的中高温升情景对中国未来径流的预估[J]. 中国科学: 地球科学, 2023, 53(3): 505-524.
|
|
[Zhou Jiayue, Lu Hui, Yang Kun, et al. Projection of China’s future runoff based on the CMIP6 mid-high warming scenarios[J]. Science China Earth Sciences, 2023, 53(3): 505-524.]
|
[26] |
孟雅丽, 段克勤, 尚溦, 等. 基于CMIP6模式数据的1961—2100年青藏高原地表气温时空变化分析[J]. 冰川冻土, 2022, 44(1): 24-33.
doi: 10.7522/j.issn.1000-0240.2022.0017
|
|
[Meng Yali, Duan Keqin, Shang Wei, et al. Analysis on spatiotemporal variations of near-surface air temperature over the Tibetan Plateau from 1961 to 2100 based on CMIP6 models’ data[J]. Journal of Glaciology and Geocryology, 2022, 44(1): 24-33.]
doi: 10.7522/j.issn.1000-0240.2022.0017
|
[27] |
雷金睿, 陈毅青, 陈宗铸, 等. 基于InVEST模型的海南岛三大流域生境质量时空演变[J]. 应用生态学, 2022, 33(9): 2511-2520.
doi: 10.13287/j.1001-9332.202209.019
|
|
[Lei Jinrui, Chen Yiqing, Chen Zongzhu, et al. Spatiotemporal evolution of habitat quality in three basins of Hainan Island based on InVEST model[J]. Chinese Journal of Applied Ecology, 2022, 33(9): 2511-2520.]
doi: 10.13287/j.1001-9332.202209.019
|
[28] |
朱增云, 阿里木江·卡斯木. 基于地理探测器的伊犁谷地生境质量时空演变及其影响因素[J]. 生态学杂, 2020, 39(10): 3408-3420.
doi: 10.13292/j.1000-4890.202010.009
|
|
[Zhu Zengyun, Kasimu Alimujiang. Spatial-temporal evolution of habitat quality in Yili Valley based on geographical detector and its influencing factors[J]. Chinese Journal of Ecology, 2020, 39(10): 3408-3420.]
doi: 10.13292/j.1000-4890.202010.009
|
[29] |
程静, 王鹏, 陈红翔, 等. 渭河流域生境质量时空演变及其地形梯度效应与影响因素[J]. 干旱区地理, 2023, 46(3): 481-491.
|
|
[Cheng Jing, Wang Peng, Chen Hongxiang, et al. Spatiotemporal evolution of habitat quality in the Weihe River Basin and its topographic gradient effects and influencing factors[J]. Arid Land Geography, 2023, 46(3): 481-491.]
|
[30] |
杨志鹏, 王士君, 田俊峰, 等. 东北三省县域开发强度与生境质量的空间关系研究[J]. 地理与地理信息科学, 2022, 38(3): 83-90.
|
|
[Yang Zhipeng, Wang Shijun, Tian Junfeng, et al. Spatial relationship between county development intensity and habitat quality in the three provinces of northeast China[J]. Geography and Geo-information Science, 2022, 38(3): 83-90.]
|
[31] |
闫俊杰, 刘海军, 崔东, 等. 近15年新疆伊犁河谷草地退化时空变化特征[J]. 草业科学, 2018, 35(3): 508-520.
|
|
[Yan Junjie, Liu Haijun, Cui Dong, et al. Spatiotemporal dynamics of grassland degradation in Yili Valley of Xinjiang over the last 15 years[J]. Pratacultural Science, 2018, 35(3): 508-520.]
|
[32] |
贾磊, 姚顺波, 邓元杰, 等. 2000—2020年陕西秦巴山区生境质量时空演变及其地形梯度效应[J]. 长江流域资源与环境, 2022, 31(2): 398-413.
|
|
[Jia Lei, Yao Shunbo, Deng Yuanjie, et al. Temporal and spatial evolution of habitat quality and its topographic gradient effect in Qinling-Daba Mountain area, Shaanxi Province, 2000—2020[J]. Resources and Environment in the Yangtze Basin, 2022, 31(2): 398-413.]
|
[33] |
刘长雨, 杨洁, 谢保鹏, 等. 黄河流域甘青段生境质量时空特征及其地形梯度效应[J]. 农业资源与环境学报, 2023, 40(2): 372-383.
|
|
[Liu Changyu, Yang Jie, Xie Baopeng, et al. Temporal and spatial characteristics of habitat quality and its topographic gradient effect in the Gansu-Qinghai section of the Yellow River Basin[J]. Journal of Agricultural Resources and Environment, 2023, 40(2): 372-383.]
|