收藏设为首页 广告服务联系我们在线留言

干旱区地理 ›› 2023, Vol. 46 ›› Issue (7): 1039-1051.doi: 10.12118/j.issn.1000-6060.2022.511

• 气候与水文 • 上一篇    下一篇

基于RClimDex模型的近60 a中亚极端降水事件变化特征

黄鑫1(),焦黎1,马晓飞2,王勇辉1(),阿尔曼·阿布拉1   

  1. 1.新疆师范大学地理科学与旅游学院/新疆干旱区湖泊环境与资源重点实验室,新疆 乌鲁木齐 830054
    2.中国科学院新疆生态与地理研究所荒漠与绿洲生态国家重点实验室/中国科学院CA生态与环境研究中心,新疆 乌鲁木齐 830011
  • 收稿日期:2022-10-09 修回日期:2022-12-29 出版日期:2023-07-25 发布日期:2023-08-03
  • 通讯作者: 王勇辉(1977-),男,博士,教授,主要从事干旱区资源利用方面研究. E-mail: wyhsd_3011@163.com
  • 作者简介:黄鑫(1999-),女,硕士研究生,主要从事干旱区资源利用方面研究. E-mail: 610817654@qq.com
  • 基金资助:
    新疆区域协同创新专项项目(2022E01014)

Change characteristics of extreme precipitation events in Central Asia in recent 60 years based on RClimDex model

HUANG Xin1(),JIAO Li1,MA Xiaofei2,WANG Yonghui1(),Aerman ABULA1   

  1. 1. College of Geography and Tourism, Xinjiang Normal University/Xinjiang Key Laboratory of Lake Environment and Resources in Arid Region, Urumqi 830054, Xinjiang, China
    2. State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences/Research Centre for Ecology and Environment of CA,Chinese Academy of Sciences, Urumqi 830011, Xinjiang, China
  • Received:2022-10-09 Revised:2022-12-29 Online:2023-07-25 Published:2023-08-03

摘要:

选取1960—2020年中亚126个气象站点逐日降水数据,基于RClimDex模型计算中亚8种极端降水指数,利用线性回归分析、Mann-Kendall法分析、相关性分析、小波变换和重标极差(R/S)分析,探究中亚极端降水事件特征。结果表明:(1)近60 a中亚极端降水事件频率和强度均明显增加,表征降水强度(SDII)变化倾向率为0.02 mm·d-1·(10a)-1。极端降水量指数中,强降水量(R95p)、单日最大降水量(Rx1day)、连续5 d最大降水量(Rx5day)、年总降水量(PRCPTOT)的变化倾向率分别为1.93 mm·(10a)-1、0.24 mm·(10a)-1、0.66 mm·(10a)-1和0.73 mm·(10a)-1。在极端降水日指数中,中雨日数(R10)、持续干燥日数(CDD)、持续湿润日数(CWD)变化倾向率分别为0.02 d·(10a)-1、-0.65 d·(10a)-1和0.08 d·(10a)-1。极端降水存在明显的空间差异性和高海拔依赖性,高原和山区附近极端降水事件频发。中亚极端降水周期特征为多峰谱型,具有准5 a短周期振荡、6~9 a中周期振荡和10~15 a长周期振荡。(2)极端降水指数与年总降水量具有良好的相关性,CWD对年总降水的贡献最大;太平洋年代际振荡(PDO)和北大西洋年代际振荡(AMO)对极端降水事件具有明显正相关性。R/S分析表明该地区极端降水特征未来持续可能性较大。研究结果可为中亚极端气候预测、自然环境保护、防灾减灾工作等提供科学依据。

关键词: 极端降水, 空间分布, 相关分析, 小波分析, 中亚

Abstract:

In this study, based on the RClimDex model, we considered daily precipitation data from 126 meteorological stations in Central Asia from 1960 to 2020 to calculate eight extreme precipitation indices in Central Asia. We performed linear regression, Mann-Kendall, correlation, wavelet, and rescaled range analyses to investigate the characteristics of extreme precipitation events in Central Asia. The results revealed that: (1) The frequency and intensity of extreme precipitation events in Central Asia have increased considerably in the last 60 years. The climate trend of the simple precipitation intensity index (SDII) increased at an average of 0.02 mm·d−1·(10a)−1. The change tendency rates of extreme precipitation index heavy precipitation (R95p), maximum daily precipitation (Rx1day), maximum precipitation for five consecutive days (Rx5day), total annual precipitation (PRCPTOT)] were 1.93 mm·(10a)−1, 0.24 mm·(10a)−1, 0.66 mm·(10a)−1, and 0.73 mm·(10a)−1, respectively. The extreme precipitation days index [middle precipitation days (R10), continuous dry days (CDD), continuous wet days (CWD)] also exhibited a slight increase, with the exception of the number of CDD, which exhibited a decreasing trend. The change tendency rates were 0.02 d·(10a)−1, −0.65 d·(10a)−1, and 0.08 d·(10a)−1, respectively. Extreme precipitation exhibit obvious spatial variability and high altitude dependence and occur frequently near highlands and mountains. The extreme precipitation cycle in Central Asia is characterized by a multipeaked spectrum with short-period oscillations of approximately 5 years, medium-period oscillations of 6-9 years, and long-period oscillations of 10-15 years. (2) The extreme precipitation index exhibits an excellent correlation with the total annual precipitation, and CWD contributes most to the total annual precipitation. The Pacific interdecadal oscillation (PDO) and the North Atlantic interdecadal oscillation (AMO) exhibit significant positive correlation with extreme precipitation events. Both PDO and AMO are the primary climate system internal variability modes that affect abrupt changes in extreme precipitation in Central Asia. The results of the R/S analysis indicates that in the future, the indices of PRCPTOT R95p, Rx1day, Rx5day, SDII, and CWD are likely to continue to increase in the future with high persistence, whereas CDD is likely to continue to exhibit a decreasing trend with average persistence. This study can provide a scientific basis for the extreme climate prediction, natural environment protection, disaster prevention, and mitigation in Central Asia.

Key words: extreme precipitation, spatial distribution, correlation analysis, wavelet analysis, Central Asia