[1] |
Chiang F, Mazdiyasni O, AghaKouchak A. Evidence of anthropogenic impacts on global drought frequency, duration, and intensity[J]. Nature Communications, 2021, 12(1): 2754, doi: 10.1038/s41467-021-22314-w.
|
[2] |
许昕彤, 朱丽, 吕潇雨, 等. MSWEP降水产品在黄河流域气象干旱监测中的适用性评价[J]. 干旱区地理, 2023, 46(3): 371-384.
|
|
[Xu Xintong, Zhu Li, Lü Xiaoyu, et al. Applicability evaluation of MSWEP precipitation product for meteorological drought monitoring in the Yellow River Basin[J]. Arid Land Geography, 2023, 46(3): 371-384. ]
|
[3] |
Guo H, Li M, Nzabarinda V, et al. Assessment of three long-term satellite-based precipitation estimates against ground observations for drought characterization in northwestern China[J]. Remote Sensing, 2022, 14(4): 828, doi: 10.3390/rs14040828.
|
[4] |
胡彩虹, 王金星, 王艺璇, 等. 水文干旱指标研究进展综述[J]. 人民长江, 2013, 44(7): 11-15.
|
|
[Hu Caihong, Wang Jinxing, Wang Yixuan, et al. Review on research of hydrological drought index[J]. Yangtze River, 2013, 44(7): 11-15. ]
|
[5] |
杨银科, 盛强, 邵鹏鲲, 等. 基于树轮密度资料的黄河干流中部地区的PDSI序列重建[J]. 水电能源科学, 2022, 40(8): 1-4, 31.
|
|
[Yang Yinke, Sheng Qiang, Shao Pengkun, et al. Reconstruction of PDSI sequence in central part of Yellow River based on tree rings density data[J]. Water Resources and Power, 2022, 40(8): 1-4, 31. ]
|
[6] |
Wang H, Zhang Y, Shao X. A tree-ring-based drought reconstruction from 1466 to 2013 CE for the Aksu area, western China[J]. Climatic Change, 2021, 165: 1-16.
|
[7] |
Li Y, Zhuang J, Bai P, et al. Evaluation of three long-term remotely sensed precipitation estimates for meteorological drought monitoring over China[J]. Remote Sensing, 2022, 15(1): 86, doi: 10.3390/rs15010086.
|
[8] |
Wu J, Liu Z, Yao H, et al. Impacts of reservoir operations on multi-scale correlations between hydrological drought and meteorological drought[J]. Journal of Hydrology, 2018, 563: 726-736.
|
[9] |
Li L, She D, Zheng H, et al. Elucidating diverse drought characteristics from two meteorological drought indices (SPI and SPEI) in China[J]. Journal of Hydrometeorology, 2020, 21(7): 1513-1530.
|
[10] |
Tian F, Wu J, Liu L, et al. Exceptional drought across Southeastern Australia caused by extreme lack of precipitation and its impacts on NDVI and SIF in 2018[J]. Remote Sensing, 2019, 12(1): 54, doi: 10.3390/rs12010054.
|
[11] |
Haile G G, Tang Q, Leng G, et al. Long-term spatiotemporal variation of drought patterns over the Greater Horn of Africa[J]. Science of the Total Environment, 2020, 704: 135299, doi: 10.1016/j.scitotenv.2019.135299.
|
[12] |
薛华柱, 李阳阳, 董国涛. 基于SPEI指数分析河西走廊气象干旱时空变化特征[J]. 中国农业气象, 2022, 43(11): 923-934.
|
|
[Xue Huazhu, Li Yangyang, Dong Guotao. Analysis of spatial-temporal variation characteristics of meteorological drought in the Hexi Corridor based on SPEI index[J]. Chinese Journal of Agrometeorology, 2022, 43(11): 923-934. ]
doi: 10.3969/j.issn.1000-6362.2022.11.006
|
[13] |
Santos J F, Pulido-Calvo I, Portela M M. Spatial and temporal variability of droughts in Portugal[J]. Water Resources Research, 2010, 46(3): W03503, doi: 10.1029/2009WR008071.
|
[14] |
成硕, 李艳忠, 星寅聪, 等. 遥感降水产品对黄河源区水文干旱特征的模拟性能分析[J]. 干旱区地理, 2023, 46(7): 1063-1072.
|
|
[Cheng Shuo, Li Yanzhong, Xing Yincong, et al. Simulation performance of remote sensing precipitation products on hydrologic drought characteristics in the source region of the Yellow River[J]. Arid Land Geography, 2023, 46(7): 1063-1072. ]
|
[15] |
Agutu N O, Awange J L, Zerihun A, et al. Assessing multi-satellite remote sensing, reanalysis, and land surface models’ products in characterizing agricultural drought in East Africa[J]. Remote Sensing of Environment, 2017, 194: 287-302.
|
[16] |
Thavorntam W, Tantemsapya N, Armstrong L. A combination of meteorological and satellite-based drought indices in a better drought assessment and forecasting in northeast Thailand[J]. Natural Hazards, 2015, 77: 1453-1474.
|
[17] |
郭瑞芳, 刘元波. 多传感器联合反演高分辨率降水方法综述[J]. 地球科学进展, 2015, 30(8): 891-903.
doi: 10.11867/j.issn.1001-8166.2015.08.0891
|
|
[Guo Ruifang, Liu Yuanbo. Multi-satellite retrieval of high resolution precipitation: An overview[J]. Advances in Earth Science, 2015, 30(8): 891-903. ]
doi: 10.11867/j.issn.1001-8166.2015.08.0891
|
[18] |
Nguyen P, Ombadi M, Sorooshian S, et al. The PERSIANN family of global satellite precipitation data: A review and evaluation of products[J]. Hydrology and Earth System Sciences, 2018, 22(11): 5801-5816.
|
[19] |
Gao F, Zhang Y, Ren X, et al. Evaluation of CHIRPS and its application for drought monitoring over the Haihe River Basin, China[J]. Natural Hazards, 2018, 92: 155-172.
|
[20] |
Alijanian M, Rakhshandehroo G R, Mishra A, et al. Evaluation of remotely sensed precipitation estimates using PERSIANN-CDR and MSWEP for spatio-temporal drought assessment over Iran[J]. Journal of hydrology, 2019, 579: 124189, doi: 10.1016/j.jhydrol.2019.124189.
|
[21] |
Fallah A, Rakhshandehroo G R, Berg P, et al. Evaluation of precipitation datasets against local observations in southwestern Iran[J]. International Journal of Climatology, 2020, 40(9): 4102-4116.
|
[22] |
Bai L, Wen Y, Shi C, et al. Which precipitation product works best in the Qinghai-Tibet Plateau, multi-source blended data, global/regional reanalysis data, or satellite retrieved precipitation data?[J]. Remote Sensing, 2020, 12(4): 683, doi: 10.3390/rs12040683.
|
[23] |
Guo H, Bao A, Liu T, et al. Meteorological drought analysis in the lower Mekong Basin using satellite-based long-term CHIRPS product[J]. Sustainability, 2017, 9(6): 901, doi: 10.3390/su9060901.
|
[24] |
Arshad M, Ma X, Yin J, et al. Evaluation of GPM-IMERG and TRMM-3B42 precipitation products over Pakistan[J]. Atmospheric Research, 2021, 249: 105341, doi: 10.1016/j.atmosres.2020.105341.
|
[25] |
Liu J, Shangguan D, Liu S, et al. Evaluation and comparison of CHIRPS and MSWEP daily-precipitation products in the Qinghai-Tibet Plateau during the period of 1981—2015[J]. Atmospheric Research, 2019, 230: 104634, doi: 10.1016/j.atmosres.2019.104634.
|
[26] |
Ma J Z, Wang X S, Edmunds W M. The characteristics of ground-water resources and their changes under the impacts of human activity in the arid northwest China: A case study of the Shiyang River Basin[J]. Journal of Arid Environments, 2005, 61(2): 277-295.
|
[27] |
Al-Kilani M R, Rahbeh M, Al-Bakri J, et al. Evaluation of remotely sensed precipitation estimates from the NASA POWER project for drought detection over Jordan[J]. Earth Systems and Environment, 2021, 5(3): 561-573.
|
[28] |
刘志红, McVicar Tim R, Van Niel T G, 等. 专用气候数据空间插值软件ANUSPLIN及其应用[J]. 气象, 2008, 34(2): 92-100.
|
|
[Liu Zhihong, McVicar Tim R, Van Niel T G, et al. Introduction of the professional interpolation software for meteorology data: ANUSPLINN[J]. Meteorological Monthly, 2008, 34(2): 92-100. ]
|
[29] |
钱永兰, 吕厚荃. 基于ANUSPLIN软件的逐日气象要素插值方法应用与评估[J]. 气象与环境学报, 2010, 26(2): 7-15.
|
|
[Qian Yonglan, Lü Houquan. Application and assessment of spatial interpolation method on daily meteorological elements based on ANUSPLIN software[J]. Journal of Meteorology and Environmental, 2010, 26(2): 7-15. ]
|
[30] |
Ashouri H, Hsu K L, Sorooshian S, et al. PERSIANN-CDR: Daily precipitation climate data record from multisatellite observations for hydrological and climate studies[J]. Bulletin of the American Meteorological Society, 2015, 96(1): 69-83.
|
[31] |
Funk C, Peterson P, Landsfeld M, et al. The climate hazards infrared precipitation with stations: A new environmental record for monitoring extremes[J]. Scientific Data, 2015, 2(1): 1-21.
|
[32] |
Joyce R J, Janowiak J E, Arkin P A, et al. CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution[J]. Journal of Hydrometeorology, 2004, 5(3): 487-503.
|
[33] |
Huffman G J, Adler R F, Bolvin D T, et al. The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales[J]. Journal of Hydrometeorology, 2007, 8(3): 38-55.
|
[34] |
Hu Q F, Yang D W, Wang Y T, et al. Accuracy and spatio-temporal variation of high resolution satellite rainfall estimate over the Ganjiang River Basin[J]. Science China: Technological Science, 2013, 56(4): 853-865.
|
[35] |
Sun R, Yuan H, Liu X, et al. Evaluation of the latest satellite-gauge precipitation products and their hydrologic applications over the Huaihe River Basin[J]. Journal of Hydrology, 2016, 536: 302-319.
|
[36] |
Tong K, Su F, Yang D, et al. Evaluation of satellite precipitation retrievals and their potential utilities in hydrologic modeling over the Tibetan Plateau[J]. Journal of Hydrology, 2014, 519(A): 423-437.
|
[37] |
Zeng H, Li L, Li J. The evaluation of TRMM multisatellite precipitation analysis (TMPA) in drought monitoring in the Lancang River Basin[J]. Journal of Geographical Sciences, 2012, 22: 273-282.
doi: 10.1007/s11442-012-0926-1
|
[38] |
Gao L, Zhang Y. Spatio-temporal variation of hydrological drought under climate change during the period 1960—2013 in the Hexi Corridor, China[J]. Journal of Arid Land, 2016, 8: 157-171.
|
[39] |
Wu J, Yao H, Chen X, et al. A framework for assessing compound drought events from a drought propagation perspective[J]. Journal of Hydrology, 2022, 604: 127228, doi: 10.1016/j.jhydrol.2021.127228.
|