[1] |
张圆, 贾贞贞, 刘绍民, 等. 遥感估算地表蒸散发真实性检验研究进展[J]. 遥感学报, 2020, 24(8): 975-999.
|
|
[Zhang Yuan, Jia Zhenzhen, Liu Shaomin, et al. Advances in validation of remotely sensed land surface evapotranspiration[J]. Journal of Remote Sensing, 2020, 24(8): 975-999. ]
|
[2] |
冯飞, 姚云军, 张彦彬, 等. 基于MOD16产品的三江平原蒸散量时空分布特征分析[J]. 生态环境学报, 2015, 24(11): 1858-1864.
doi: 10.16258/j.cnki.1674-5906.2015.11.016
|
|
[Feng Fei, Yao Yunjun, Zhang Yanbin, et al. Spatio-temporal variations of evapotranspiration in Sanjiang Plain using MOD16 products[J]. Ecology and Environmental Sciences, 2015, 24(11): 1858-1864. ]
|
[3] |
王焕, 梅再美. 贵州省地表蒸散发时空变化及其与气候因子的关系[J]. 水土保持研究, 2020, 27(5): 221-229.
|
|
[Wang Huan, Mei Zaimei. Spatiotemporal changes of evapotranspiration and their relationship with climate factors in Guizhou Province[J]. Research of Soil and Water Conservation, 2020, 27(5): 221-229. ]
|
[4] |
刘昌明, 张丹. 中国地表潜在蒸散发敏感性的时空变化特征分析[J]. 地理学报, 2011, 66(5): 579-588.
|
|
[Liu Changming, Zhang Dan. Temporal and spatial change analysis of the sensitivity of potential evapotranspiration to meteorological influencing factors in China[J]. Acta Geographica Sinica, 2011, 66(5): 579-588. ]
doi: 10.11821/xb201105001
|
[5] |
张晓涛, 康绍忠, 王鹏新, 等. 估算区域蒸发蒸腾量的遥感模型对比分析[J]. 农业工程学报, 2006, 22(7): 6-13.
|
|
[Zhang Xiaotao, Kang Shaozhong, Wang Pengxin, et al. Comparative analysis of regional evapotranspiration estimation models using remotely sensed data[J]. Transactions of the Chinese Society of Agricultural Engineering, 2006, 22(7): 6-13. ]
|
[6] |
Mu Q Z, Heinsch F A, Zhao M S, et al. Development of a global evapotranspiration algorithm based on MODIS and global meteorology data[J]. Remote Sensing of Environment, 2007, 111(4): 519-536.
|
[7] |
Mu Q Z, Zhao M S, Running S W. Improvements to a MODIS global terrestrial evapotranspiration algorithm[J]. Remote Sensing of Environment, 2011, 115(8): 1781-1800.
|
[8] |
Hu G C, Li J. Monitoring of evapotranspiration in a semi-arid inland river basin by combining microwave and optical remote sensing observations[J]. Remote Sensing, 2015, 7(3): 3056-3087.
|
[9] |
Miralles D G, Holmes T, De J, et al. Global land-surface evaporation estimated from satellite-based observations[J]. Hydrology and Earth System Sciences Discussions, 2010, 7(5): 453-469.
|
[10] |
Senay G B, Bohms S, Singh R K, et al. Operational evapotranspiration mapping using remote sensing and weather datasets: A new parameterization for the SSEB approach[J]. Jawra Journal of the American Water Resources Association, 2013, 49(3): 577-591.
|
[11] |
Loarie S R, Lobell D B, Asner G P, et al. Direct impacts on local climate of sugar-cane expansion in Brazil[J]. Nature Climate Change, 2011, 1(2): 105-109.
|
[12] |
Faisol A, Indarto I, Novita E, et al. An evaluation of MODIS global evapotranspiration product (MOD16A2) as terrestrial evapotranspiration in east Java-Indonesia[J]. IOP Conference Series: Earth and Environmental Science, 2020, 485(1): 12002, doi: 10.1088/1755-1315/485/1/012002.
|
[13] |
吴桂平, 刘元波, 赵晓松, 等. 基于MOD16产品的鄱阳湖流域地表蒸散量时空分布特征[J]. 地理研究, 2013, 32(4): 617-627.
|
|
[Wu Guiping, Liu Yuanbo, Zhao Xiaosong, et al. Spatio-temporal variations of evapotranspiration in Poyang Lake Basin using MOD16 products[J]. Geographical Research, 2013, 32(4): 617-627. ]
|
[14] |
张猛, 曾永年, 齐玥. 基于MOD16的洞庭湖流域2000—2014年地表蒸散时空变化分析[J]. 农业工程学报, 2018, 34(20): 160-168.
|
|
[Zhang Meng, Zeng Yongnian, Qi Yue. Analyzing spatio-temporal variations of evapotranspiration in Dongting Lake Basin during 2000—2014 based on MOD16[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(20): 160-168. ]
|
[15] |
王卓月, 孔金玲, 李英, 等. 基于MOD16的银川平原地表蒸散量时空特征及影响因素分析[J]. 水文地质工程地质, 2021, 48(3): 53-61.
|
|
[Wang Zhuoyue, Kong Jinling, Li Ying, et al. An analysis of spatio-temporal characteristics and influencing factors of surface evapotranspiration in the Yinchuan Plain based on MOD16 data[J]. Hydrogeology & Engineering Geology, 2021, 48(3): 53-61. ]
|
[16] |
范雪梅, 罗贤, 季漩, 等. 基于MOD16产品的怒江流域中上游蒸散发分布特征研究[J]. 水土保持通报, 2019, 39(2): 199-205.
|
|
[Fan Xuemei, Luo Xian, Ji Xuan, et al. Spatial distribution of evapotranspiration in middle and upper Nujiang River Basin based on MOD16 products[J]. Bulletin of Soil and Water Conservation, 2019, 39(2): 199-205. ]
|
[17] |
孔晶晶, 昝梅, 张振东. 新疆玛纳斯河流域蒸散发时空分布格局研究[J]. 灌溉排水学报, 2021, 40(10): 117-124.
|
|
[Kong Jingjing, Zan Mei, Zhang Zhendong. Spatiotemporal variation of evapotranspiration in the Manas River Basin in Xinjiang[J]. Journal of Irrigation and Drainage, 2021, 40(10): 117-124. ]
|
[18] |
褚荣浩, 李萌, 谢鹏飞, 等. 安徽省近20年地表蒸散和干旱变化特征及其影响因素分析[J]. 生态环境学报, 2021, 30(6): 1229-1239.
doi: 10.16258/j.cnki.1674-5906.2021.06.014
|
|
[Chu Ronghao, Li Meng, Xie Pengfei, et al. Characteristics and influencing factors of surface evapotranspiration and drought in Anhui Province during recent 20 years[J]. Ecology and Environmental Sciences, 2021, 30(6): 1229-1239. ]
|
[19] |
温媛媛, 赵军, 王炎强, 等. 基于MOD16的山西省地表蒸散发时空变化特征分析[J]. 地理科学进展, 2020, 39(2): 255-264.
doi: 10.18306/dlkxjz.2020.02.007
|
|
[Wen Yuanyuan, Zhao Jun, Wang Yanqiang, et al. Spatiotemporal variation characteristics of surface evapotranspiration in Shanxi Province based on MOD16[J]. Progress in Geography, 2020, 39(2): 255-264. ]
doi: 10.18306/dlkxjz.2020.02.007
|
[20] |
马建琴, 陈阳, 郝秀平, 等. 2001—2019年河南省地表蒸散发时空变化及其影响因素[J]. 水土保持研究, 2021, 28(5): 134-141.
|
|
[Ma Jianqin, Chen Yang, Hao Xiuping, et al. Temporal and spatial changes of surface evapotranspiration and its influencing factors in Henan Province from 2001 to 2019[J]. Research of Soil and Water Conservation, 2021, 28(5): 134-141. ]
|
[21] |
贺添, 邵全琴. 基于MOD16产品的我国2001—2010年蒸散发时空格局变化分析[J]. 地球信息科学学报, 2014, 16(6): 979-988.
doi: 10.3724/SP.J.1047.2014.00979
|
|
[He Tian, Shao Quanqin. Spatial-temporal variation of terrestrial evapotranspiration in China from 2001 to 2010 using MOD16 products[J]. Journal of Geo-information Science, 2014, 16(6): 979-988. ]
|
[22] |
杨艳颖, 毛克彪. 中国蒸散时空变化规律及其对耕地旱灾影响研究[J]. 中国农业资源与区划, 2021, 42(9): 36-51.
|
|
[Yang Yanying, Mao Kebiao. Temporal and spatial variation of variation of evapotranspiration in China its impact on drought of cropland[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2021, 42(9): 36-51. ]
|
[23] |
邱丽莎, 张立峰, 何毅, 等. 2000—2018年祁连山蒸散发时空变化及影响因素[J]. 水土保持研究, 2020, 27(3): 210-217.
|
|
[Qiu Lisha, Zhang Lifeng, He Yi, et al. Spatiotemporal variations of evapotranspiration and influence factors in Qilian Mountain from 2000 to 2018[J]. Research of Soil and Water Conservation, 2020, 27(3): 210-217. ]
|
[24] |
叶红, 张廷斌, 易桂花, 等. 2000—2014年黄河源区ET时空特征及其与气候因子关系[J]. 地理学报, 2018, 73(11): 2117-2134.
doi: 10.11821/dlxb201811006
|
|
[Ye Hong, Zhang Tingbin, Yi Guihua, et al. Spatio-temporal characteristics of evapotranspiration and its relationship with climate factors in the source region of the Yellow River from 2000 to 2014[J]. Acta Geographica Sinica, 2018, 73(11): 2117-2134. ]
doi: 10.11821/dlxb201811006
|
[25] |
王军邦, 赵烜岚, 叶辉, 等. 基于贝叶斯模型平均的蒸散遥感产品集成——以三江源国家公园为例[J]. 应用生态学报, 2021, 32(6): 2119-2128.
doi: 10.13287/j.1001-9332.202106.017
|
|
[Wang Junbang, Zhao Xuanlan, Ye Hui, et al. Integration of evapotranspiration remote sensing products based on Bayesian model averaging: An example from Three-River-Source National Park[J]. Chinese Journal of Applied Ecology, 2021, 32(6): 2119-2128. ]
doi: 10.13287/j.1001-9332.202106.017
|
[26] |
赵天玮, 朱文彬, 裴亮, 等. 三江源蒸散发遥感估算及其时空分布特征研究[J]. 遥感技术与应用, 2022, 37(1): 137-147.
doi: 10.11873/j.issn.1004-0323.2022.1.0137
|
|
[Zhao Tianwei, Zhu Wenbin, Pei Liang, et al. Remote sensing estimation of terrestrial evapotranspiration and analysis of its temporal-spatial distribution characteristics over the Three-River Headwater region[J]. Remote Sensing Technology and Application, 2022, 37(1): 137-147. ]
|
[27] |
李红阳, 陈天宇, 王圣杰, 等. 1979—2021年新疆昆仑山北坡潜在蒸散时空变化研究[J]. 干旱区地理, 2024, 47(9): 1443-1450.
doi: 10.12118/j.issn.1000-6060.2024.107
|
|
[Li Hongyang, Chen Tianyu, Wang Shengjie, et al. Spatial and temporal variations of potential evapotranspiration on the northern slope of the Kunlun Mountains in Xinjiang from 1979 to 2021[J]. Arid Land Geography, 2024, 47(9): 1443-1450. ]
doi: 10.12118/j.issn.1000-6060.2024.107
|
[28] |
马亚丽, 牛最荣, 孙栋元. 河西走廊潜在蒸散发时空格局变化与气象因素的关系[J]. 干旱区地理, 2024, 47(2): 192-202.
doi: 10.12118/j.issn.1000-6060.2023.108
|
|
[Ma Yali, Niu Zuirong, Sun Dongyuan. Relationship between changes in spatial and temporal patterns of potential evapotranspiration and meteorological factors in the Hexi Corridor[J]. Arid Land Geography, 2024, 47(2): 192-202. ]
doi: 10.12118/j.issn.1000-6060.2023.108
|
[29] |
申红艳, 马明亮, 王冀, 等. 青海省极端气温事件的气候变化特征研究[J]. 冰川冻土, 2012, 34(6): 1371-1379.
|
|
[Shen Hongyan, Ma Mingliang, Wang Ji, et al. Variation characteristics of extreme air temperature events in Qinghai Province[J]. Journal of Glaciology and Geocryology, 2012, 34(6): 1371-1379. ]
|
[30] |
刘凤, 曾永年. 2000—2015年青海高原植被碳源/汇时空格局及变化[J]. 生态学报, 2021, 41(14): 5792-5803.
|
|
[Liu Feng, Zeng Yongnian. Analysis of the spatio-temporal variation of vegetation carbon source/sink in Qinghai Plateau from 2000—2015[J]. Acta Ecologica Sinica, 2021, 41(14): 5792-5803. ]
|
[31] |
Liu S M, Li X, Xu Z L, et al. The Heihe integrated observatory network: A basin-scale land surface processes observatory in China[J]. Vadose Zone Journal, 2018, 17(1): 180072, doi: 10.2136/vzj2018.04.0072.
|
[32] |
刘绍民, 车涛, 徐自为, 等. 祁连山综合观测网: 黑河流域地表过程综合观测网(阿柔超级站涡动相关仪-2020)[R]. 北京: 国家青藏高原科学数据中心, 2021.
|
|
[Liu Shaomin, Che Tao, Xu Ziwei, et al. Qilian Mountain comprehensive observation network: Heihe River Basin surface process comprehensive observation network (Aru superstation eddy correlation instrument 2020)[R]. Beijing: National Tibetan Plateau / Third Pole Environment Data Center, 2021. ]
|
[33] |
Li X Y, Yang X F, Ma Y J, et al. Qinghai Lake Basin critical zone observatory on the Qinghai-Tibet Plateau[J]. Vadose Zone Journal, 2018, 17(1): 180069, doi: 10.2136/vzj2018.04.0069.
|
[34] |
李小雁. 祁连山综合观测网:青海湖流域地表过程综合观测网(温性草原涡动相关仪-2020)[R]. 北京: 国家青藏高原科学数据中心, 2021.
|
|
[Li Xiaoyan. Qilian Mountain comprehensive observation network: Qinghai Lake Basin surface process comprehensive observation network (temperate grassland eddy correlation instrument-2020)[R]. Beijing: National Tibetan Plateau / Third Pole Environment Data Center, 2021. ]
|
[35] |
徐自为, 刘绍民, 徐同仁, 等. 涡动相关仪观测蒸散量的插补方法比较[J]. 地球科学进展, 2009, 24(4): 372-382.
doi: 10.11867/j.issn.1001-8166.2009.04.0372
|
|
[Xu Ziwei, Liu Shaomin, Xu Tongren, et al. Comparison of the gap filling methods of evapotranspiration measured by eddy covariance system[J]. Advances in Earth Science, 2009, 24(4): 372-382. ]
doi: 10.11867/j.issn.1001-8166.2009.04.0372
|
[36] |
Ke Y, Im J, Park S, et al. Spatiotemporal downscaling approaches for monitoring 8-day 30 m actual evapotranspiration[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 126: 79-93.
|
[37] |
Yang J, Huang X. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019[J]. Earth System Science Data, 2021, 13(8): 3907-3925.
doi: 10.5194/essd-13-3907-2021
|