收藏设为首页 广告服务联系我们在线留言

干旱区地理 ›› 2025, Vol. 48 ›› Issue (5): 854-865.doi: 10.12118/j.issn.1000-6060.2024.401 cstr: 32274.14.ALG2024401

• 碳排放 • 上一篇    下一篇

黄河流域农业碳排放时空变化特征及影响因素分析

李梦冉1(), 徐小任1(), 王梁1, 段健2, 史舒琪1, 任丹丹1   

  1. 1.山东省水土保持与环境保育重点实验室,临沂大学资源环境学院,山东 临沂 276000
    2.浙江师范大学地理与环境科学学院,浙江 金华 321004
  • 收稿日期:2024-07-01 修回日期:2024-09-30 出版日期:2025-05-25 发布日期:2025-05-13
  • 通讯作者: 徐小任(1985-),女,博士,副教授,主要从事农业碳排放、乡村转型等方面的研究. E-mail: xuxiaoren@lyu.edu.cn
  • 作者简介:李梦冉(2001-),女,本科生,主要从事农业碳排放测算与乡村发展等方面的研究. E-mail: lmrcn1127@outlook.com
  • 基金资助:
    教育部人文社会科学研究项目(24YJCZH362);山东省自然科学基金项目(ZR202211210254);山东省自然科学基金项目(ZR2024QD163)

Spatial-temporal characteristics and influencing factors of agricultural carbon emissions in the Yellow River Basin

LI Mengran1(), XU Xiaoren1(), WANG Liang1, DUAN Jian2, SHI Shuqi1, REN Dandan1   

  1. 1. Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi 276000, Shandong, China
    2. College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
  • Received:2024-07-01 Revised:2024-09-30 Published:2025-05-25 Online:2025-05-13

摘要: 根据农业生产中化肥、农药、农膜、柴油、翻耕以及农业灌溉6项碳源,采用联合国政府间气候变化专门委员会(IPCC)提出的碳排放系数方法测度并分析了2005—2020年黄河流域省域、市域尺度农业碳排放量及时空特征,使用地理加权回归模型剖析了影响因素的空间异质性。结果表明:(1) 2005—2020年黄河流域农业碳排放量呈现先增后减的特点,总体呈上升趋势,由2005年的4431.95×104 t增至2020年的4915.87×104 t,其中化肥、翻耕是主要碳源,占农业碳排放总量的65%以上,农药碳排放量始终处于最低水平。(2) 2005年黄河流域省域尺度农业碳排放量最高的是山东省,为1241.68×104 t。2010—2020年农业碳排放量最高的是河南省,排放量介于1360×104~1470×104 t之间,农业碳排放量最低的一直是青海省。2020年黄河流域市域尺度农业碳排放量呈现“由东向西”阶梯式递减的空间分异格局。(3) 农业生产效率对黄河流域农业碳排放量的正向影响呈现东南和西北高、东北低的空间变化特征;农业结构的负向影响高值区为山西省;农业经济发展水平的正向影响高值区为陕西省、山西省、河南省交界地区;农业劳动力规模的正向影响呈现东南和西北高、西南低的空间特征。

关键词: 黄河流域, 农业碳排放, 时空变化, 影响因素, 地理加权回归模型

Abstract:

Based on six carbon sources in agricultural production, namely fertilizers, pesticides, agricultural films, diesel oil, plowing, and agricultural irrigation, this study applied the carbon emission coefficient method proposed by the United Nations Intergovernmental Panel on Climate Change to measure and analyze the spatiotemporal variation in agricultural carbon emissions at provincial and municipal scales in the Yellow River Basin of China from 2005 to 2020. The spatial heterogeneity of the influencing factors was assessed using a geographically weighted regression model. The conclusions are as follows: (1) From 2005 to 2020, agricultural carbon emissions in the Yellow River Basin initially increased before declining, following an overall upward trend. Emissions rose from 4431.95×104 t in 2005 to 4915.87×104 t in 2020. Among the carbon sources, fertilizers and plowing were the primary contributors, accounting for more than 65% of total agricultural carbon emissions. Pesticide-related carbon emissions consistently remained the lowest. (2) In 2005, Shandong Province was the leading contributor to agricultural carbon emissions in the Yellow River Basin, with emissions of 1241.68×104 t. However, from 2010 to 2020, Henan Province became the largest emitter, with annual emissions ranging from 1360×104 t to 1470×104 t. Qinghai Province consistently recorded the lowest agricultural carbon emissions. In 2020, agricultural carbon emissions at the municipal scale exhibited a stepped decline from east to west in the Yellow River Basin. (3) The positive effect of agricultural production efficiency on agricultural carbon emissions was stronger in the southeast and northwest and lower in the northeast of the Yellow River Basin. The negative impact of agricultural structure was most pronounced in Shanxi Province. The highest positive impact of agricultural economic development was observed at the borders of Shaanxi Province, Shanxi Province, and Henan Province. The positive effect of the agricultural labor force was higher in the southeast and northwest and lower in the southwest.

Key words: Yellow River Basin, agricultural carbon emissions, spatial-temporal variation, influencing factors, geographically weighted regression model