收藏设为首页 广告服务联系我们在线留言
  • 2025年7月23日 星期三

干旱区地理 ›› 2025, Vol. 48 ›› Issue (5): 866-878.doi: 10.12118/j.issn.1000-6060.2024.345 cstr: 32274.14.ALG2024345

• 碳排放 • 上一篇    下一篇

新疆农业碳排放效率时空异质性及其影响因素

刘海军1,2,3(), 张海虹2, 闫俊杰2, 李想2, 李高峰2   

  1. 1.伊犁师范大学微生物资源保护与开发利用重点实验室,新疆 伊宁 835000
    2.伊犁师范大学资源与环境学院,新疆 伊宁 835000
    3.西南大学地理科学学院,重庆 400715
  • 收稿日期:2024-06-03 修回日期:2024-07-22 出版日期:2025-05-25 发布日期:2025-05-13
  • 作者简介:刘海军(1988-),男,博士研究生,副教授,主要从事生态经济与可持续发展研究. E-mail: 16013@ylnu.edu.cn
  • 基金资助:
    伊犁师范大学微生物资源保护与开发利用重点实验室开放课题(YLUKLM202005);伊犁师范大学校级科研项目重大专项(2023ZDZX002)

Spatiotemporal heterogeneity and its influencing factors of agricultural carbon emission efficiency in Xinjiang

LIU Haijun1,2,3(), ZHANG Haihong2, YAN Junjie2, LI Xiang2, LI Gaofeng2   

  1. 1. Key Laboratory of Microbial Resources Protection, Development and Utilization, Yili Normal University, Yining 835000, Xinjiang, China
    2. School of Resources and Environment, Yili Normal University, Yining 835000, Xinjiang, China
    3. School of Geographical Sciences, Southwest University, Chongqing 400715, China
  • Received:2024-06-03 Revised:2024-07-22 Published:2025-05-25 Online:2025-05-13

摘要: 在推进低碳农业发展进程中,深入研究农业碳排放效率的时空异质性及其影响因素,对于加速新疆农业经济发展,驱动农业生产绿色转型具有重大意义。以2000—2020年新疆14个地州市作为研究对象,利用非期望产出的SBM模型、Malmquist指数模型对农业碳排放效率进行评估,并采用空间自相关模型分析农业碳排放效率的空间关联特征,最后利用Tobit模型探究新疆农业碳排放效率的影响因素。结果表明:(1) 2000—2020年新疆各地州市农业碳排放效率总体反映出“缓慢-快速-缓慢”的发展轨迹,地区间差异较大。(2) 2000年塔城地区农业碳排放效率呈低-高的集聚特征;2007年昌吉回族自治州处于高-高集聚,到2014年吐鲁番市和昌吉回族自治州位于高-高集聚;2020年巴音郭楞蒙古自治州、哈密市和昌吉回族自治州位于低-高集聚。总体上,高-高集聚型区域呈减小趋势,低-高集聚型区域呈增加态势。(3) 耕地规模化程度和农业经济整体发展水平对农业碳排放效率产生正向影响;农业产业结构、作物种植结构以及有效灌溉率对农业碳排放效率产生负向影响。通过对新疆农业碳排放效率的时空异质性及影响因素研究,以期为干旱区农业可持续发展提供理论支撑和实证依据。

关键词: 农业碳排放效率, 非期望产出SBM模型, 空间相关性, 影响因素, 新疆

Abstract:

The promotion of low-carbon agricultural development necessitates in-depth research into the spatiotemporal heterogeneity of agricultural carbon emission efficiency and its influencing factors. This will facilitate the acceleration of Xinjiang’s agricultural economic development while driving the green transformation of agricultural production. This study focused on 14 prefectures and cities in Xinjiang from 2000 to 2020 to assess agricultural carbon emission efficiency. The analysis was conducted using the SBM model of nonexpected output and the Malmquist index. The spatial characteristics of agricultural carbon emission efficiency were further examined using the spatial autocorrelation model, and the Tobit model was applied to explore factors influencing efficiency. The findings suggested the following. (1) From 2000 to 2020, the agricultural carbon emission efficiency in Xinjiang followed a “slow-fast-slow” development pattern, with significant inter-regional disparities. (2) In 2000, the Tacheng Prefecture exhibited a low-high agglomeration pattern in case of agricultural carbon emission efficiency. By 2007, the Changji Hui Autonomous Prefecture transitioned to a high-high agglomeration pattern. Further, by 2014, Turpan City and the Changji Hui Autonomous Prefecture were both exhibited high-high agglomeration. In 2020, the Bayingol Mongolian Autonomous Prefecture, Hami City, and Changji Hui Autonomous Prefecture were situated in a low-high agglomeration. Thus, a general decline in regions exhibiting high-high agglomeration and an increase in those with low-high agglomeration was observed. (3) The extent of arable land scale and the overall advancement of the agricultural economy positively affected the agricultural carbon emission efficiency. Further, the agricultural industry structure, crop cultivation structure, and effective irrigation rate negatively affected the agricultural carbon emission efficiency. Thus, this study highlights the spatial and temporal heterogeneity of agricultural carbon emission efficiency and its influencing factors in Xinjiang. The findings are expected to provide theoretical support and empirical evidence for the sustainable development of agriculture in arid areas.

Key words: agricultural carbon emission efficiency, non-expected output SBM model, spatial correlation, influencing factors, Xinjiang