收藏设为首页 广告服务联系我们在线留言

干旱区地理 ›› 2023, Vol. 46 ›› Issue (11): 1879-1890.doi: 10.12118/j.issn.1000-6060.2022.619

• 区域发展 • 上一篇    下一篇

中国科普教育基地空间分布、类型结构及影响因素

马晓敏(),张志斌(),郭倩倩,吴志祥,冯雪丽   

  1. 西北师范大学地理与环境科学学院,甘肃 兰州 730070
  • 收稿日期:2022-11-25 修回日期:2023-01-05 出版日期:2023-11-25 发布日期:2023-12-05
  • 通讯作者: 张志斌(1965-),男,博士,教授,主要从事城市与区域规划研究. E-mail: zbzhang@nwnu.edu.cn
  • 作者简介:马晓敏(1997-),女,硕士研究生,主要从事城市与区域规划研究. E-mail: mxm202009@163.com
  • 基金资助:
    国家自然科学基金项目(41961029)

Spatial distribution, type structure and influencing factors of popular science education bases in China

MA Xiaomin(),ZHANG Zhibin(),GUO Qianqian,WU Zhixiang,FENG Xueli   

  1. College of Geography and Environmental Science, Northwest Normal University, Lanzhou 730070, Gansu, China
  • Received:2022-11-25 Revised:2023-01-05 Online:2023-11-25 Published:2023-12-05

摘要:

以2022年中国科学技术协会公布的798个科普教育基地为研究对象,采用平均最邻近指数、核密度、不均衡指数揭示了科普教育基地的空间分布和类型结构特征,进而利用地理探测器、叠加分析等方法探测了中国科普教育基地空间分布格局的影响因素。结果表明:(1) 中国科普教育基地空间分布不均衡,呈聚集分布状态,高密度区主要集中在东部经济基础较好、市场开放程度较高的京津冀、长三角、珠三角,西部地区形成以省会城市为核心的低密度集聚区。(2) 中国科普教育基地类型结构中,科技场馆类科普教育基地所占比例最高,呈现“双核多点”空间特征,“三农”类科普教育基地所占比例最低,呈“一带多点”空间结构,各类型科普教育基地呈现不同的空间分异格局。(3) 中国科普教育基地空间分布受社会经济、交通条件、教育水平、旅游资源和政策制度等人文因素以及高程、河流等自然环境因素的叠加影响。研究结果对优化中国科普教育基地的空间布局,促进科普资源的高效利用具有参考意义。

关键词: 科普教育基地, 空间分布, 类型结构, 影响因素, 地理探测器

Abstract:

In a comprehensive study conducted in 2022, 798 popular science education bases issued by the China Association for Science and Technology took center stage as the research object in this investigation. Using a multifaceted analytical approach, this study delved into the intricate spatial dynamics and typological structure of these educational establishments. The methods employed included the average nearest neighbor index, nuclear density analysis, and unbalanced index. Furthermore, this study probed the factors influencing the spatial distribution pattern of popular science education bases in China, by leveraging geographic detection and superposition analysis. This research showed important findings: (1) The spatial distribution of popular science education bases in China is uneven and clustered. The high-density clusters are mainly concentrated areas with good economic foundations and high market openness in the east, such as the Beijing-Tianjin-Hebei, Yangtze River Delta, and Pearl River Delta regions. In contrast, the central and western regions exhibited low-density clusters centered around provincial capitals. (2) When examining the typology of these education bases, science and technology venues accounted for the highest proportion, showing the spatial characteristics of “dual-core and multipoint.” In contrast, “agriculture, rural areas, and farmers” popular science education bases had the lowest proportion, showing the spatial structure of “one belt and multipoint.” All types of popular science education bases exhibited unique spatial differentiation patterns. (3) The spatial distribution of these education bases was affected by a combination of human factors, such as social economy, traffic conditions, education level, scenic spot resources, and policy systems, and natural environmental factors, such as elevation and rivers. These research results have substantial implications for optimizing the spatial layout of popular science education bases in China and promoting the efficient use of popular science resources.

Key words: popular science education base, spatial pattern, type structure, influencing factors, geographic detector