Arid Land Geography ›› 2026, Vol. 49 ›› Issue (1): 80-93.doi: 10.12118/j.issn.1000-6060.2025.079
• Earth Surface Process • Previous Articles Next Articles
LI Jialin1,2,3(
), LI Xinhu1,2,3(
), WANG Hongchao1,2,3, CUI Mengmeng2, GUO Yubo1,2,3, JIN Haodong1,3, REN Xiaoxiao1,3
Received:2025-02-18
Revised:2025-05-07
Online:2026-01-25
Published:2026-01-18
Contact:
LI Xinhu
E-mail:lijialin22@mails.ucas.ac.cn;lixinhu@ms.xjb.ac.cn
LI Jialin, LI Xinhu, WANG Hongchao, CUI Mengmeng, GUO Yubo, JIN Haodong, REN Xiaoxiao. Quantitative modeling of evaporation resistance in salt crusts under varying influencing factors[J].Arid Land Geography, 2026, 49(1): 80-93.
Tab. 1
Test treatments"
| 处理 | 土壤粒径 | 供水/逐渐干燥 | 驱动方式及速率 | 饱和溶液 |
|---|---|---|---|---|
| DL1 | 细砂 | 逐渐干燥 | 200±10 W·m-2辐射 | 5.0%NaCl |
| DL2 | 细砂 | 逐渐干燥 | 500±20 W·m-2辐射 | 5.0%NaCl |
| DL3 | 细砂 | 逐渐干燥 | 800±30 W·m-2辐射 | 5.0%NaCl |
| DL4 | 粗砂 | 逐渐干燥 | 200±10 W·m-2辐射 | 5.0%NaCl |
| DL5 | 粗砂 | 逐渐干燥 | 500±20 W·m-2辐射 | 5.0%NaCl |
| DL6 | 粗砂 | 逐渐干燥 | 800±30 W·m-2辐射 | 5.0%NaCl |
| GL1 | 细砂 | 供水 | 200±10 W·m-2辐射 | 5.0%NaCl |
| GL2 | 细砂 | 供水 | 500±20 W·m-2辐射 | 5.0%NaCl |
| GL3 | 细砂 | 供水 | 800±30 W·m-2辐射 | 5.0%NaCl |
| GL4 | 粗砂 | 供水 | 200±10 W·m-2辐射 | 5.0%NaCl |
| GL5 | 粗砂 | 供水 | 500±20 W·m-2辐射 | 5.0%NaCl |
| GL6 | 粗砂 | 供水 | 800±30 W·m-2辐射 | 5.0%NaCl |
| GH1 | 细砂 | 供水 | 200±10 W·m-2辐射 | 17.5%NaCl |
| GH2 | 细砂 | 供水 | 500±20 W·m-2辐射 | 17.5%NaCl |
| GH3 | 细砂 | 供水 | 800±30 W·m-2辐射 | 17.5%NaCl |
| GH4 | 粗砂 | 供水 | 200±10 W·m-2辐射 | 17.5%NaCl |
| GH5 | 粗砂 | 供水 | 500±20 W·m-2辐射 | 17.5%NaCl |
| GH6 | 粗砂 | 供水 | 800±30 W·m-2辐射 | 17.5%NaCl |
| WH1 | 细砂 | 供水 | 3.5±0.2 m·s-1风速 | 17.5%NaCl |
| WH2 | 细砂 | 供水 | 8.0±0.6 m·s-1风速 | 17.5%NaCl |
| WH3 | 粗砂 | 供水 | 3.5±0.2 m·s-1风速 | 17.5%NaCl |
| WH4 | 粗砂 | 供水 | 8.0±0.6 m·s-1风速 | 17.5%NaCl |
Tab. 2
Parameter evaluation of salt crust evaporation resistance fitted by gaussian process regression"
| 处理 | R2 | RMSE/s·m-1 | MAE/s·m-1 | |||
|---|---|---|---|---|---|---|
| DL1 | 3.16 | 1.07 | 0.32 | 0.99 | 629.75 | 395.63 |
| DL2 | 3.16 | 0.75 | 0.32 | 0.98 | 1976.54 | 1353.40 |
| DL3 | 3.16 | 0.95 | 0.32 | 0.99 | 3397.44 | 2397.40 |
| DL4 | 3.16 | 0.75 | 0.32 | 0.99 | 112.70 | 70.43 |
| DL5 | 3.16 | 0.83 | 0.32 | 0.99 | 315.91 | 205.14 |
| DL6 | 3.16 | 0.98 | 0.32 | 0.99 | 574.54 | 379.45 |
| GL1 | 3.16 | 0.45 | 0.32 | 0.91 | 35.33 | 22.82 |
| GL2 | 3.16 | 0.33 | 0.32 | 0.98 | 96.02 | 52.17 |
| GL3 | 3.16 | 0.29 | 0.32 | 0.95 | 590.91 | 369.99 |
| GL4 | 3.16 | 0.31 | 0.32 | 0.97 | 53.99 | 36.26 |
| GL5 | 3.16 | 0.39 | 0.32 | 0.98 | 92.66 | 62.57 |
| GL6 | 3.16 | 0.46 | 0.32 | 0.97 | 229.17 | 140.30 |
| GH1 | 3.16 | 1.20 | 0.32 | 0.81 | 19.91 | 15.29 |
| GH2 | 3.16 | 1.08 | 0.32 | 0.81 | 16.31 | 13.29 |
| GH3 | 3.16 | 0.85 | 0.32 | 0.98 | 79.05 | 50.67 |
| GH4 | 3.16 | 0.78 | 0.32 | 0.96 | 137.31 | 105.35 |
| GH5 | 3.16 | 1.16 | 0.32 | 0.99 | 72.41 | 58.69 |
| GH6 | 3.16 | 0.80 | 0.32 | 0.99 | 391.60 | 292.87 |
| WH1 | 3.16 | 1.08 | 0.32 | 0.98 | 20.48 | 15.13 |
| WH2 | 3.16 | 0.59 | 0.32 | 0.94 | 34.04 | 24.83 |
| WH3 | 3.16 | 0.72 | 0.32 | 0.98 | 42.61 | 31.29 |
| WH4 | 3.16 | 0.45 | 0.32 | 0.97 | 49.82 | 32.03 |
| [1] | Shokri N. Pore-scale dynamics of salt transport and distribution in drying porous media[J]. Physics of Fluids, 2014, 26(1): 191-209. |
| [2] |
Sghaier N, Prat M. Effect of efflorescence formation on drying kinetics of porous media[J]. Transport in Porous Media, 2009, 80(3): 441-454.
doi: 10.1007/s11242-009-9373-6 |
| [3] |
Shokri-Kuehni S M S, Sahimi M, Shokri N. A personal perspective on prediction of saline water evaporation from porous media[J]. Drying Technology, 2022, 40(4): 691-696.
doi: 10.1080/07373937.2021.1999256 |
| [4] |
Nachshon U, Weisbrod N. Beyond the salt crust: On combined evaporation and subflorescent salt precipitation in porous media[J]. Transport in Porous Media, 2015, 110(2): 295-310.
doi: 10.1007/s11242-015-0514-9 |
| [5] |
Gran M, Carrera J, Massana J, et al. Dynamics of water vapor flux and water separation processes during evaporation from a salty dry soil[J]. Journal of Hydrology, 2011, 396(3-4): 215-220.
doi: 10.1016/j.jhydrol.2010.11.011 |
| [6] |
Gupta S, Huinink H P, Pel L, et al. How ferrocyanide influences NaCl crystallization under different humidity conditions[J]. Crystal Growth & Design, 2014, 14(4): 1591-1599.
doi: 10.1021/cg4015459 |
| [7] | Desarnaud J, Derluyn H, Molari L, et al. Drying of salt contaminated porous media: Effect of primary and secondary nucleation[J]. Journal of Applied Physics, 2015, 118(11): 1541-1551. |
| [8] | Wang H C, Li X H, Guo M, et al. Effect of salt types on salt precipitation and water transport in saline sandy soil[J]. Hydrological Processes, 2024, 38(3): e15123, doi: 10.1002/hyp.15123. |
| [9] | Li X H, Shi F Z. Effects of evolving salt precipitation on the evaporation and temperature of sandy soil with a fixed groundwater table[J]. Vadose Zone Journal, 2022, 20(3): e20122, doi: 10.1002/vzj2.20122. |
| [10] | Nachshon U, Weisbrod N, Dragila M I, et al. Combined evaporation and salt precipitation in homogeneous and heterogeneous porous media[J]. Water Resources Research, 2011, 47(3): W03513, doi: 10.1029/2010WR009677. |
| [11] |
Eloukabi H, Sghaier N, Prat M, et al. Drying experiments in a hydrophobic model porous medium in the presence of a dissolved salt[J]. Chemical Engineering & Technology, 2011, 34(7): 1085-1094.
doi: 10.1002/ceat.v34.7 |
| [12] | Wen W, Lai Y, You Z. Numerical modeling of water-heat-vapor-salt transport in unsaturated soil under evaporation[J]. International Journal of Heat and Mass Transfer, 2020, 159: 120114, doi: 10.1016/j.ijheatmasstransfer.2020.120114. |
| [13] | Li X H, Guo M. Experimental study of evaporation flux, salt precipitation, and surface temperature on homogeneous and heterogeneous porous media[J]. Advances in Civil Engineering, 2022, 2022: 7434471, doi: 10.1155/2022/7434471. |
| [14] | Shokri N, Hassani A, Sahimi M. Multi-scale soil salinization dynamics from global to pore scale: A review[J]. Reviews of Geophysics, 2024, 62(4): e2023RG000804, doi: 10.1029/2023RG000804. |
| [15] | Shokri-Kuehni S M S, Raaijmakers B, Kurz T, et al. Water table depth and soil salinization: From pore-scale processes to field-scale responses[J]. Water Resources Research, 2020, 56(2): e2019WR026707, doi: 10.1029/2019WR026707. |
| [16] | Li X H, Shi F Z. The effect of flooding on evaporation and the groundwater table for a salt-crusted soil[J]. Water, 2019, 11(5): 1003, doi: 10.3390/w11051003. |
| [17] | 王晓静, 徐新文, 雷加强, 等. 咸水滴灌下林带的盐结皮时空分布规律[J]. 干旱区研究, 2006, 23(3): 399-404. |
| [Wang Xiaojing, Xu Xinwen, Lei Jiaqiang, et al. Spatiotemporal distribution of salt crust in a shelter-forest belt under drip-irrigation with salt water[J]. Arid Zone Research, 2006, 23(3): 399-404.] | |
| [18] | 张建国, 徐新文, 雷加强, 等. 沙漠地区咸水滴灌林地盐结皮层化学特征[J]. 干旱区研究, 2009, 26(2): 255-260. |
|
[Zhang Jianguo, Xu Xinwen, Lei Jiaqiang, et al. Chemical properties of the salt crust layer in shelterbelts under drip irrigation with saline water in a mobile desert[J]. Arid Zone Research, 2009, 26(2): 255-260.]
doi: 10.3724/SP.J.1148.2009.00255 |
|
| [19] |
段钊, 李瑞怡, 宋昆, 等. 盐风化作用下黄土结构的破坏特征与机理[J]. 干旱区地理, 2024, 47(12): 2041-2050.
doi: 10.12118/j.issn.1000-6060.2024.152 |
|
[Duan Zhao, Li Ruiyi, Song Kun, et al. Damage characteristics and mechanisms of soil structures under salt weathering[J]. Arid Land Geography, 2024, 47(12): 2041-2050.]
doi: 10.12118/j.issn.1000-6060.2024.152 |
|
| [20] |
Li X H, Shi F Z. Salt precipitation and evaporative flux on sandy soil with saline groundwater under different evaporation demand conditions[J]. Soil Research, 2021, 60(2): 187-196.
doi: 10.1071/SR21111 |
| [21] | Li X H, Wang H C. Effect of salt crust on the soil temperature of wet sandy soils[J]. Agricultural and Forest Meteorology, 2025, 362: 110346, doi: 10.1016/j.agrformet.2024.110346. |
| [22] | Li X H, Guo M, Wang H C. Impact of soil texture and salt type on salt precipitation and evaporation under different hydraulic conditions[J]. Hydrological Processes, 2022, 36(11): e14763, doi: 10.1002/hyp.14763. |
| [23] |
Rad M N, Shokri N, Keshmiri A, et al. Effects of grain and pore size on salt precipitation during evaporation from porous media[J]. Transport in Porous Media, 2015, 110(2): 281-294.
doi: 10.1007/s11242-015-0515-8 |
| [24] |
Eloukabi H, Sghaier N, Ben Nasrallah S, et al. Experimental study of the effect of sodium chloride on drying of porous media: The crusty-patchy efflorescence transition[J]. International Journal of Heat and Mass Transfer, 2013, 56(1-2): 80-93.
doi: 10.1016/j.ijheatmasstransfer.2012.09.045 |
| [25] | Rad M N, Shokri N, Sahimi M. Pore-scale dynamics of salt precipitation in drying porous media[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physic, 2013, 88(3): 032404, doi: 10.1103/PhysRevE.88.032404. |
| [26] |
Argaman E, Singer A, Tsoar H. Erodibility of some crust forming soils/sediments from the southern aral sea basin as determined in a wind tunnel[J]. Earth Surface Processes and Landforms, 2006, 31(1): 47-63.
doi: 10.1002/esp.v31:1 |
| [27] |
Dai S, Shin H, Santamarina J C. Formation and development of salt crusts on soil surfaces[J]. Acta Geotechnica, 2016, 11(5): 1103-1109.
doi: 10.1007/s11440-015-0421-9 |
| [28] |
唐洋, 李新虎, 郭敏, 等. 不同初始盐分浓度下土壤盐结皮的形成过程及其对蒸发的影响机理[J]. 干旱区地理, 2022, 45(4): 1137-1145.
doi: 10.12118/j.issn.1000-6060.2021.438 |
|
[Tang Yang, Li Xinhu, Guo Min, et al. Formation process of soil salt crust and its influence mechanism on evaporation under different initial salt concentrations[J]. Arid Land Geography, 2022, 45(4): 1137-1145.]
doi: 10.12118/j.issn.1000-6060.2021.438 |
|
| [29] | Nachshon U, Shahraeeni E, Or D, et al. Infrared thermography of evaporative fluxes and dynamics of salt deposition on heterogeneous porous surfaces[J]. Water Resources Research, 2011, 47(12): W12519, doi: 10.1029/2011WR010776. |
| [30] |
Nachshon U, Weisbrod N, Katzir R, et al. NaCl crust architecture and its impact on evaporation: Three-dimensional insights[J]. Geophysical Research Letters, 2018, 45(12): 6100-6108.
doi: 10.1029/2018GL078363 |
| [31] |
Shokri-Kuehni S M S, Vetter T, Webb C, et al. New insights into saline water evaporation from porous media: Complex interaction between evaporation rates, precipitation, and surface temperature[J]. Geophysical Research Letters, 2017, 44(11): 5504-5510.
doi: 10.1002/grl.v44.11 |
| [32] | Rose D A, Konukcu F, Gowing J W. Effect of watertable depth on evaporation and salt accumulation from saline groundwater[J]. Australian Journal of Soil Research, 2005, 43(5): 565-573. |
| [33] | Wang H C, Li X H, Li J L, et al. Impact of salt precipitation on evaporation resistance under different soil textures[J]. Environmental Earth Sciences, 2025, 84(12): 12014, doi: 10.1007/s12665-024-12014-1. |
| [34] |
Fujimaki H, Shimano T, Inoue M, et al. Effect of a salt crust on evaporation from a bare saline soil[J]. Vadose Zone Journal, 2006, 5(4): 1246-1256.
doi: 10.2136/vzj2005.0144 |
| [35] | 王弘超. 土壤盐结皮物理性质的差异及其对水热传输阻力的影响[D]. 北京: 中国科学院大学, 2024. |
| [Wang Hongchao. The difference of physical properties for soil salt crust and its influence on water-heat transport resistance[D]. Beijing: University of Chinese Academy of Sciences, 2024.] | |
| [36] |
Bittelli M, Ventura F, Campbell G S, et al. Coupling of heat, water vapor, and liquid water fluxes to compute evaporation in bare soils[J]. Journal of Hydrology, 2008, 362(3-4): 191-205.
doi: 10.1016/j.jhydrol.2008.08.014 |
| [37] |
van de G A A, Owe M. Bare soil surface-resistance to evaporation by vapor diffusion under semiarid conditions[J]. Water Resources Research, 1994, 30(2): 181-188.
doi: 10.1029/93WR02747 |
| [38] | Roussel C. Visualization of explainable artificial intelligence for GeoAI[J]. Frontiers in Computer Science, 2024, 6: 1414923, doi: 10.3389/fcomp.2024.1414923. |
| [39] | Wang H J, Fan Z P, Chen J Y, et al. Discovering key sub-trajectories to explain traffic prediction[J]. Sensors, 2023, 23(130): s23010130, doi: 10.3390/s23010130. |
| [40] |
Ding X J, Liu J, Yang F, et al. Random radial basis function kernel-based support vector machine[J]. Journal of the Franklin Institute, 2021, 358(18): 10121-10140.
doi: 10.1016/j.jfranklin.2021.10.005 |
| [41] | Zhao Z, Fitzsimons J K, Fitzsimons J F. Quantum-assisted gaussian process regression[J]. Physical Review A, 2019, 99(5): 052331, doi: 10.1103/PhysRevA.99.052331. |
| [42] |
Gran M, Carrera J, Olivella S, et al. Modeling evaporation processes in a saline soil from saturation to oven dry conditions[J]. Hydrology and Earth System Sciences, 2011, 15(7): 2077-2089.
doi: 10.5194/hess-15-2077-2011 |
| [43] |
王弘超, 李新虎, 郭敏, 等. 盐结皮土壤形成发育过程影响下的能量平衡动态变化[J]. 干旱区地理, 2024, 47(3): 424-432.
doi: 10.12118/j.issn.1000-6060.2023.435 |
|
[Wang Hongchao, Li Xinhu, Guo Min, et al. Dynamic variation of energy balance under the influence of salt-crusted soil formation and development[J]. Arid Land Geography, 2024, 47(3): 424-432.]
doi: 10.12118/j.issn.1000-6060.2023.435 |
|
| [44] | Valeriani C, Sanz E, Frenkel D. Rate of homogeneous crystal nucleation in molten NaCl[J]. Journal of Chemical Physics, 2005, 122(19): 194501, doi: 10.1063/1.1896348g. |
|
||
