Arid Land Geography ›› 2023, Vol. 46 ›› Issue (9): 1418-1431.doi: 10.12118/j.issn.1000-6060.2022.607
• Climatology and Hydrology • Previous Articles Next Articles
NIU Yiying1,2,3(),LI Chunlan4,WANG Jun1,2,3(),XU Hanqing1,2,3,5,LIU Qing1,2,3
Received:
2022-11-17
Revised:
2023-02-09
Online:
2023-09-25
Published:
2023-09-28
NIU Yiying, LI Chunlan, WANG Jun, XU Hanqing, LIU Qing. Performance evaluation of ERA5 reanalysis precipitation data and spatiotemporal characteristics of extreme precipitation in Inner Mongolia[J].Arid Land Geography, 2023, 46(9): 1418-1431.
Tab. 2
Definition of extreme precipitation indices"
指数 | 指标 | 中文名称 | 定义 | 单位 | 权重 |
---|---|---|---|---|---|
频率指数 | R10 | 中雨天数 | 一年内日降水量≥10 mm的天数 | d | 0.0690 |
R20 | 暴雨天数 | 一年内日降水量≥20 mm的天数 | d | 0.0845 | |
R30 | 特大暴雨日数 | 一年内日降水量≥30 mm的天数 | d | 0.0868 | |
强度指数 | SDII | 湿日降水强度 | 年总降水量与日降水量≥1 mm天数的比值 | mm·d-1 | 0.0897 |
R95p | 强降水量 | 一年内日降水量>第95%分位值的降水量之和 | mm | 0.0909 | |
R99p | 极强降水量 | 一年内日降水量>第99%分位值的降水量之和 | mm | 0.0962 | |
PRCPTOT | 湿日总降水量 | 一年内日降水量>1 mm的降水量总和 | mm | 0.0700 | |
R95pTOT | 强降水总量 | R95p与PRCPTOT的比值 | % | 0.0916 | |
Rx1day | 1 d最大降水量 | 一年内最大日降水量 | mm | 0.0950 | |
Rx5day | 5 d最大总降水量 | 一年内连续5 d最大累积降水量 | mm | 0.0919 | |
Rx7day | 7 d最大总降水量 | 一年内连续7 d最大累积降水量 | mm | 0.0904 | |
持续时间 指数 | CWD | 持续湿润日数 | 一年内日降水量≥1 mm的最长持续天数 | d | 0.0340 |
CDD | 持续干燥日数 | 一年内日降水量<1 mm的最长持续天数 | d | 0.0100 |
[1] | 白美兰, 郝润全, 高建峰, 等. 内蒙古地区极端气候事件分布特征及对农业影响评估[J]. 干旱地区农业研究, 2009, 27(2): 21-27. |
[Bai Meilan, Hao Runquan, Gao Jianfeng, et al. Distribution character of extreme climatic events and evaluation of its influence on agriculture in Inner Mongolia[J]. Agricultural Research in the Arid Areas, 2009, 27(2): 21-27.] | |
[2] | 尤莉, 戴新刚, 张宇. 1961—2008年内蒙古降水极端事件分析[J]. 气候变化研究进展, 2010, 6(6): 411-416. |
[You li, Dai Xingang, Zhang Yu. Extreme precipitation events in Inner Mongolia in 1961—2008[J]. Climate Change Research, 2010, 6(6): 411-416.] | |
[3] | 刘泓志, 肖长来, 张岩祥, 等. 内蒙古50余年降水量分布演变特征及趋势[J]. 水土保持研究, 2015, 22(2): 74-78. |
[Liu Hongzhi, Xiao Changlai, Zhang Yanxiang, et al. Analysis on temporal characteristics and trend of precipitation over the past 50 years in Inner Mongolia[J]. Research of Soil and Water Conservation, 2015, 22(2): 74-78.] | |
[4] |
Haile A T, Yan F, Habib E. Accuracy of the CMORPH satellite-rainfall product over Lake Tana Basin in eastern Africa[J]. Atmospheric Research, 2015, 163: 177-187.
doi: 10.1016/j.atmosres.2014.11.011 |
[5] | Ma Q, Li Y, Feng H, et al. Performance evaluation and correction of precipitation data using the 20-year IMERG and TMPA precipitation products in diverse subregions of China[J]. Atmospheric Research, 2021, 249: 105304, doi: 10.1016/j.atmosres.2020.105304. |
[6] |
Mantas V M, Liu Z, Caro C, et al. Validation of TRMM multi-satellite precipitation analysis (TMPA) products in the Peruvian Andes[J]. Atmospheric Research, 2015, 163: 132-145.
doi: 10.1016/j.atmosres.2014.11.012 |
[7] |
Yong B, Chen B, Gourley J J, et al. Intercomparison of the Version-6 and Version-7 TMPA precipitation products over high and low latitudes basins with independent gauge networks: Is the newer version better in both real-time and post-real-time analysis for water resources and hydrologic extremes?[J]. Journal of Hydrology, 2014, 508: 77-87.
doi: 10.1016/j.jhydrol.2013.10.050 |
[8] | 唐国强, 万玮, 曾子悦, 等. 全球降水测量(GPM)计划及其最新进展综述[J]. 遥感技术与应用, 2015, 30(4): 607-615. |
[Tang Guoqiang, Wan Wei, Zeng Ziyue, et al. An overview of the global precipitation measurement (GPM) Mission and it’s latest development[J]. Remote Sensing Technology and Application, 2015, 30(4): 607-615.] | |
[9] | 黄依之, 张行南, 方园皓. CMORPH卫星反演降水数据质量评估及水文过程模拟[J]. 水电能源科学, 2020, 38(9): 1-4. |
[Huang Yizhi, Zhang Xingnan, Fang Yuanhao. Evaluation of CMORPH satellite rainfall data and its application in hydrologic process simulation[J]. Water Resources and Power, 2020, 38(9): 1-4.] | |
[10] |
Tan M L, Santo H. Comparison of GPM IMERG, TMPA 3B42 and PERSIANN-CDR satellite precipitation products over Malaysia[J]. Atmospheric Research, 2018, 202: 63-76.
doi: 10.1016/j.atmosres.2017.11.006 |
[11] |
岳书平, 闫业超, 张树文, 等. 基于ERA5-LAND的中国东北地区近地表土壤冻融状态时空变化特征[J]. 地理学报, 2021, 76(11): 2765-2779.
doi: 10.11821/dlxb202111012 |
[Yue Shuping, Yan Yechao, Zhang Shuwen, et al. Spatiotemporal variations of soil freeze-thaw state in northeast China based on the ERA5-LAND dataset[J]. Acta Geographica Sinica, 2021, 76(11): 2765-2779.]
doi: 10.11821/dlxb202111012 |
|
[12] |
Jiao D L, Xu N N, Yang F, et al. Evaluation of spatial-temporal variation performance of ERA5 precipitation data in China[J]. Scientific Reports, 2021, 11(1): 17956, doi: 10.1038/s41598-021-97432-y.
pmid: 34504211 |
[13] |
Chen G X, Iwasaki T, Qin H L, et al. Evaluation of the warm-season diurnal variability over East Asia in recent reanalyses JRA-55, ERA-Interim, NCEP CFSR, and NASA MERRA[J]. Journal of Climate, 2014, 27(14): 5517-5537.
doi: 10.1175/JCLI-D-14-00005.1 |
[14] |
Gabriela C R, Tereza C. Trends of daily extreme and non-extreme rainfall indices and intercomparison with different gridded data sets over Mexico and the southern United States[J]. International Journal of Climatology, 2021, 41(11): 5406-5430.
doi: 10.1002/joc.v41.11 |
[15] | 温婷婷, 郭英香, 董少睿, 等. 1979—2017年CRU、ERA5、CMFD格点降水数据在青藏高原适用性评估[J]. 干旱区研究, 2022, 39(3): 684-697. |
[Wen Tingting, Guo Yingxiang, Dong Shaorui, et al. Assessment of CRU, ERA5, CMFD grid precipitation data for the Tibetan Plateau from 1979 to 2017[J]. Arid Zone Research, 2022, 39(3): 684-697.] | |
[16] | Amjad M, Yilmaz M T, Yucel I, et al. Performance evaluation of satellite- and model-based precipitation products over varying climate and complex topography[J]. Journal of Hydrology, 2020, 584: 124707, doi: 10.1016/j.jhydrol.2020.124707. |
[17] | Sharifi E, Eitzinger J, Dorigo W. Performance of the state-of-the-art gridded precipitation products over mountainous terrain: A regional study over Austria[J]. Remote Sensing, 2019, 11(17): 2018, doi: 10.3390/rs11172018. |
[18] |
Jiang Q, Li W Y, Wen J H, et al. Evaluation of satellite-based products for extreme rainfall estimations in the eastern coastal areas of China[J]. Journal of Integrative Environmental Sciences, 2019, 16: 191-207.
doi: 10.1080/1943815X.2019.1707233 |
[19] | 尹红, 孙颖. 基于ETCCDI指数 2017 年中国极端温度和降水特征分析[J]. 气候变化研究进展, 2019, 15(4): 363-373. |
[Yin Hong, Sun Ying. Characteristics of extreme temperature and precipitation in China in 2017 based on ETCCDI indices[J]. Climate Change Research, 2019, 15(4): 363-373.] | |
[20] | 马爱华, 岳大鹏, 赵景波, 等. 近60 a来内蒙古极端降水时空变化及其影响[J]. 干旱区研究, 2020, 37(1): 74-85. |
[Ma Aihua, Yue Dapeng, Zhao Jingbo, et al. Spatiotemporal variation and effect of extreme precipitation in Inner Mongolia in recent 60 years[J]. Arid Zone Research, 2020, 37(1): 74-85.] | |
[21] | 许心怡, 李建柱, 冯平. 不同降水产品在滦河流域径流模拟中的适用性[J]. 水力发电学报, 2021, 40(12): 25-39. |
[Xu Xinyi, Li Jianzhu, Feng Ping. Applicability of different precipitation products to runoff simulations of Luanhe River Basin[J]. Journal of Hydroelectric Engineering, 2021, 40(12): 25-39.] | |
[22] | Xu F L, Guo B, Ye B, et al. Systematical evaluation of GPM IMERG and TRMM 3b42v7 precipitation products in the Huang-Huai-Hai Plain, China[J]. Remote Sensing, 2019, 11(6): 697, doi: 10.3390/rs11060697. |
[23] | 甘富万, 李彦婕, 倪倩, 等. 五种卫星降水产品在沿海流域多时空尺度的综合精度评估[J]. 中国农村水利水电, 2022(4): 72-79. |
[Gan Fuwan, Li Yanjie, Ni Qian, et al. Comprehensive accuracy evaluation of five satellite precipitation products in the coastal basin at multiple spatio-temporal scales[J]. China Rural Water and Hydropower, 2022(4): 72-79.] | |
[24] | 李彦妮, 黄昌, 庞国伟. 全球降雨计划GSMaP与IMERG卫星降雨产品在陕西地区的精度评估[J]. 干旱区地理, 2022, 45(1): 80-90. |
[Li Yanni, Huang Chang, Pang Guowei. Accuracy assessment of GSMaP and IMERG satellite precipitation products in Shaanxi Province[J]. Arid Land Geography, 2022, 45(1): 80-90.] | |
[25] |
任英杰, 雍斌, 鹿德凯, 等. 全球降水计划多卫星降水联合反演IMERG卫星降水产品在中国大陆地区的多尺度精度评估[J]. 湖泊科学, 2019, 31(2): 560-572.
doi: 10.18307/2019.0224 |
[Ren Yingjie, Yong Bin, Lu Dekai, et al. Evaluation of the integrated multi-satellite retrievals (IMERG) for global precipitation measurement (GPM) mission over the mainland China at multiple scales[J]. Journal of Lake Sciences, 2019, 31(2): 560-572.]
doi: 10.18307/2019.0224 |
|
[26] | 姚飛, 杨秀芹, 刘慕嘉, 等. ERA5再分析降水数据在长江三角洲的性能评估[J]. 水土保持学报, 2022, 36(4): 178-189. |
[Yao Fei, Yang Xiuqin, Liu Mujia, et al. Performance evaluation of ERA5 reanalysis precipitation data in the Yangtze River Delta[J]. Journal of Soil and Water Conservation, 2022, 36(4): 178-189.] | |
[27] | 王蕊, 余钟波, 杨传国, 等. TRMM/GPM卫星降水产品在淮河上游逐日和小时尺度的精度评估[J]. 水资源与水工程学报, 2018, 29(5): 109-115. |
[Wang Rui, Yu Zhongbo, Yang Chuanguo, et al. Accuracy evaluation of TRMM/GPM satellite precipitation products on daily and hourly scales in upper reaches of Huaihe River Basin[J]. Journal of Water Resources and Water Engineering, 2018, 29(5): 109-115.] | |
[28] | Zhou C G, Gao W, Hu J, et al. Capability of IMERG V6 early, late, and final precipitation products for monitoring extreme precipitation events[J]. Remote Sensing, 2021, 13(4): 689, doi: 10.3390/rs13040689. |
[29] | Yong B, Ren L L, Hong Y, et al. Hydrologic evaluation of multi-satellite precipitation analysis standard precipitation products in basins beyond its inclined latitude band: A case study in Laohahe Basin, China[J]. Water Resources Research, 2010, 46(7): 759-768. |
[30] |
周旗, 张海宁, 任源鑫. 1961—2016 年渭河流域极端降水事件研究[J]. 地理科学, 2020, 40(5): 833-841.
doi: 10.13249/j.cnki.sgs.2020.05.018 |
[Zhou Qi, Zhang Haining, Ren Yuanxin. Extreme precipitation events in the Weihe River Basin from 1961 to 2016[J]. Scientia Geographica Sinica, 2020, 40(5): 833-841.]
doi: 10.13249/j.cnki.sgs.2020.05.018 |
|
[31] | 徐玉霞. 基于GIS的陕西省洪涝灾害风险评估及区划[J]. 灾害学, 2017, 32(2): 103-108. |
[Xu Yuxia. Assessment and regionalization of flood disaster risk in Shaanxi Province based on GIS[J]. Journal of Catastrophology, 2017, 32(2): 103-108.] | |
[32] | 李思慧. 内蒙古东南部暴雨洪涝灾害风险评估与区划——以通辽市为例[J]. 内蒙古气象, 2019(1): 23-28. |
[Li Sihui. Risk assessment and zonation of rainstorm and flood disasters in the southeast region of Inner Mongolia: A case study of Tongliao[J]. Meteorology Journal of Inner Mongolia, 2019(1): 23-28.] | |
[33] | 黄晓远, 李谢辉. 基于CMIP6的西南暴雨洪涝灾害风险未来预估[J]. 应用气象学报, 2022, 33(2): 231-243. |
[Huang Xiaoyuan, Li Xiehui. Future projection of rainstorm and flood disaster risk in southwest China based on CMIP6 models[J]. Journal of Applied Meteorological Science, 2022, 33(2): 231-243.] | |
[34] |
Sen P K. Estimates of the regression coefficient based on Kendall’s Tau[J]. Journal of the American Statistical Association, 1968, 63(324): 1379-1389.
doi: 10.1080/01621459.1968.10480934 |
[35] | 金令, 王永芳, 郭恩亮, 等. 基于SPEIbase v.2.6数据集的内蒙古旱灾危险性评价[J]. 干旱区地理, 2022, 45(3): 695-705. |
[Jin Ling, Wang Yongfang, Guo Enliang, et al. Evaluation of drought hazards in Inner Mongolia based on SPEIbase v.2.6 dataset[J]. Arid Land Geography, 2022, 45(3): 695-705.] | |
[36] | 肖杨, 周旭, 罗雪, 等. 黔中地区近60年潜在蒸散量时空变化特征及主导因素识别[J]. 水土保持研究, 2021, 28(6): 190-198. |
[Xiao Yang, Zhou Xu, Luo Xue, et al. Spatiotemporal variation characteristics of potential evapotranspiration and identification of leading factors in central Guizhou in recent 60 years[J]. Research of Soil and Water Conservation, 2021, 28(6): 190-198.] | |
[37] | 范磊, 吕爱锋, 张文翔. 青海省干旱时空特征及与大气环流响应关系[J]. 干旱区资源与环境, 2021, 35(12): 60-65. |
[Fan Lei, Lü Aifeng, Zhang Wenxiang. Temporal-spatial variation characteristics of drought and its relationship with atmospheric circulation in Qinghai Province[J]. Journal of Arid Land Resources and Environment, 2021, 35(12): 60-65.] | |
[38] | Jiang Q, Li W Y, Fan Z D, et al. Evaluation of ERA5 reanalysis precipitation dataset over Chinese Mainland[J]. Journal of Hydrology, 2021, 595: 125660, doi: 10.1016/j.jhydrol.2020.125660. |
[39] | 马梓策, 孙鹏, 姚蕊, 等. 内蒙古地区干旱时空变化特征及其对植被的影响[J]. 水土保持学报, 2022, 36(6): 231-240. |
[Ma Zice, Sun Peng, Yao Rui, et al. Temporal and spatial variation of drought and its impact on vegetation in Inner Mongolia[J]. Journal of Soil and Water Conservation, 2022, 36(6): 231-240.] |
|