Arid Land Geography ›› 2021, Vol. 44 ›› Issue (3): 750-758.doi: 10.12118/j.issn.1000–6060.2021.03.17
• Ecology and Environment of Tarim River Basin • Previous Articles Next Articles
LI Yuanyuan(),PENG Mengwen,DANG Hanli,JIANG Meng,ZHUANG Li,LI Guifang()
Received:
2021-02-04
Revised:
2021-02-27
Online:
2021-05-25
Published:
2021-06-01
Contact:
Guifang LI
E-mail:374597860@qq.com;496068253@qq.com
LI Yuanyuan,PENG Mengwen,DANG Hanli,JIANG Meng,ZHUANG Li,LI Guifang. Bacterial communities diversity of Populus euphratica rhizospheric soil in the lower reaches of Tarim River[J].Arid Land Geography, 2021, 44(3): 750-758.
Tab. 2
Physicochemical properties of rhizosphere soil of Populus euphratica at different developmental periods"
土壤理化性质 | 幼龄期(A) | 中壮期(B) | 过熟期(C) | 衰亡期(D) | 裸地(CK) |
---|---|---|---|---|---|
含水量(SWC)/% | 6.34±0.65a | 3.41±1.11bc | 3.17±1.05bc | 5.02±0.24ab | 1.61±0.09c |
有机质(OM)/g·kg-1 | 7.06±1.66ab | 7.17±2.13ab | 5.66±1.11b | 11.04±1.44a | 5.16±0.78b |
全氮(TN)/g·kg-1 | 0.42±0.07ab | 0.51±0.03ab | 0.37±0.04b | 0.54±0.02a | 0.41±0.02ab |
全磷(TP)/g·kg-1 | 0.58±0.01a | 0.61±0.03a | 0.61±0.05a | 0.64±0.01a | 0.65±0.03a |
全钾(TK)/g·kg-1 | 18.25±0.54b | 17.54±0.18bc | 17.93±0.23b | 19.71±0.15a | 16.85±0.23c |
硝态氮(NO3-)/mg·kg-1 | 4.86±1.04ab | 3.16±2.19b | 2.84±0.87b | 3.97±0.43ab | 8.14±2.35a |
铵态氮(NH4+)/mg·kg-1 | 2.49±0.04a | 2.94±0.41a | 2.46±0.69a | 2.11±0.31a | 2.72±0.21a |
速效磷(AP)/mg·kg-1 | 3.06±1.83ab | 2.01±1.45b | 1.86±1.09b | 6.03±0.93a | 2.31±0.71ab |
速效钾(AK)/mg·kg-1 | 421.81±35.05c | 345.13±118.76c | 931.10±215.86b | 3398.67±235.91a | 389.78±81.09c |
pH | 7.78±0.05c | 8.43±0.13b | 8.61±0.15b | 9.49±0.19a | 7.89±0.19c |
电导率(EC)/mS·cm-1 | 2.78±0.15b | 2.11±1.46b | 2.74±1.08b | 7.96±1.14a | 5.34±0.78ab |
总盐(TDS)/g·kg-1 | 9.78±0.42b | 7.81±5.34b | 8.65±3.88b | 30.01±4.59a | 18.84±2.98ab |
Tab. 3
Diversity indices for each sample"
生长时期 | Shannon指数 | Simpson指数 | Chao1指数 | ACE指数 | 覆盖率 |
---|---|---|---|---|---|
裸地(CK) | 8.23±0.39a | 0.9840±0.0052a | 2724.56±211.81a | 2850.77±240.89a | 0.9887±0.0006 |
幼龄期(A) | 8.18±0.76a | 0.9817±0.0157a | 2536.04±181.46a | 2425.85±420.43a | 0.9903±0.0006 |
中壮期(B) | 8.83±0.70a | 0.9917±0.0038a | 3003.81±509.22a | 3136.30±534.48a | 0.9873±0.0012 |
过熟期(C) | 8.86±0.40a | 0.9920±0.0017a | 2729.57±277.58a | 2790.52±240.48a | 0.9897±0.0006 |
衰亡期(D) | 7.85±0.90a | 0.9753±0.0201a | 2549.67±249.84a | 2653.46±253.02a | 0.9890±0.0010 |
P值 | 0.324 | 0.419 | 0.398 | 0.250 |
[1] | 王世绩. 全球胡杨林的现状及保护和恢复对策[J]. 世界林业研究, 1996(6):37-44. |
[ Wang Shiji. The status, conservation and recovery of global resources of Populus euphradica[J]. World Forestry Research, 1996(6):37-44. ] | |
[2] | 周莹莹, 陈亚宁, 朱成刚, 等. 塔里木河下游胡杨(Populus euphratica)种群结构[J]. 中国沙漠, 2018,38(2):315-323. |
[ Zhou Yingying, Chen Yaning, Zhu Chenggang, et al. Population structure characteristics of Populus euphratica in the lower reaches of Tarim River[J]. Journal of Desert Research, 2018,38(2):315-323. ] | |
[3] | 杨玉海, 陈亚宁, 蔡柏岩, 等. 极端干旱区胡杨根围丛枝菌根真菌的分离与鉴定[J]. 干旱区地理, 2012,35(2):260-266. |
[ Yang Yuhai, Chen Yaning, Cai Baiyan, et al. Arbuscular mycorrhizal in roots of Populus euphratica in the lower reaches of Tarim River in extreme arid area[J]. Arid Land Geography, 2012,35(2):260-266. ] | |
[4] | 李丽君, 张小清, 陈长清, 等. 近20 a塔里木河下游输水对生态环境的影响[J]. 干旱区地理, 2018,41(2):238-247. |
[ Li Lijun, Zhang Xiaoqing, Chen Changqing, et al. Ecological effects of water conveyance on the lower reaches of Tarim River in recent twenty years[J]. Arid Land Geography, 2018,41(2):238-247. ] | |
[5] | Deng C Z, Zhang X M, Wu J X, et al. The influences of water comveyance embankments on the Populus euphratica’s communities and populations in the middle research of Tarim River[J]. Acta Ecologica Sinica, 2010,30(5):1356-1366. |
[6] | 韩璐, 王家强, 王海珍, 等. 塔里木河上游胡杨种群结构与动态[J]. 生态学报, 2014,34(16):4640-4651. |
[ Han Lu, Wang Jiaqiang, Wang Haizhen, et al. Population structure and dynamics of Populus euphratica in the upper reaches of Tarim River[J]. Acta Ecologica Sinica, 2014,34(16):4640-4651. ] | |
[7] | Davide B, Ruben G, Philipp C, et al. Structure and function of the bacterial root microbiota in wild and domesticated barley[J]. Cell Host & Microbe, 2015,17(3):392-403. |
[8] |
Fierer N, Breitbart M, Nulton J, et al. Metagenomic and small-subunit rRNA analyses reveal the genetic diversity of bacteria, archaea, fungi, and viruses in soil[J]. Applied and Environmental Microbiology, 2007,73(21):7059-7066.
doi: 10.1128/AEM.00358-07 |
[9] | 黄志强, 邱景璇, 李杰, 等. 基于16S rRNA基因测序分析微生物群落多样性[J/OL]. 微生物学报. [2021-02-04]. https://doi.org/10.13343/j.cnki.wsxb.20200336. |
[ Huang Zhiqiang, Qiu Jingxuan, Li Jie, et al. Exploration of microbial diversity based on 16S rRNA gene sequence analysis[J/OL]. Acta Microbiologica Sinica. [2021-02-04]. https://doi.org/10.13343/j.cnki.wsxb.20200336. ] | |
[10] |
Leininger S, Urich T, Schloter M, et al. Archaea predominate among ammonia-oxidizing prokaryotes in soils[J]. Nature, 2006,442(7104):806-809.
pmid: 16915287 |
[11] |
Rafael V, Maurício D C, Júlio César L N, et al. Rhizosphere microbiological processes and eucalypt nutrition: Synjournal and conceptualization[J]. Science of the Total Environment, 2020,746:141305, doi: 10.1016/j.scitotenv.2020.141305.
doi: 10.1016/j.scitotenv.2020.141305 |
[12] |
Matthew C E, Olubukola O B. Effects of inorganic and organic treatments on the microbial community of maize rhizosphere by a shotgun metagenomics approach[J]. Annals of Microbiology, 2020,70(1):70-78.
doi: 10.1186/s13213-020-01610-8 |
[13] |
Han Q, Ma Q, Chen Y, et al. Variation in rhizosphere microbial communities and its association with the symbiotic efficiency of rhizobia in soybean[J]. The ISME Journal, 2020,14(8):1915-1928.
doi: 10.1038/s41396-020-0648-9 |
[14] | 袁仁文, 刘琳, 张蕊, 等. 植物根际分泌物与土壤微生物互作关系的机制研究进展[J]. 中国农学通报, 2020,36(2):26-35. |
[ Yuan Renwen, Liu Lin, Zhang Rui, et al. The interaction mechanism between plant rhizosphere secretion and soil microbe[J]. Chinese Agricultural Science Bulletin, 2020,36(2):26-35. ] | |
[15] |
Marschner P, Yang C H, Lieberei R, et al. Soil and plant specific effects on bacterial community composition in the rhizosphere[J]. Soil Biology and Biochemistry, 2001,33(11):1437-1445.
doi: 10.1016/S0038-0717(01)00052-9 |
[16] | 孙建波, 邹良平, 李文彬, 等. 香蕉不同生育期根际土壤细菌群落变化研究[J]. 热带作物学报, 2016,37(6):1168-1171. |
[ Sun Jianbo, Zou Liangping, Li Wenbin, et al. The variation of bacterial community in the banana rhizosphere soil at different growth stages[J]. Chinese Journal of Tropical Crops, 2016,37(6):1168-1171. ] | |
[17] | 李智卫, 王超, 陈伟, 等. 不同树龄苹果园土壤微生物生态特征研究[J]. 土壤通报, 2011,42(2):302-306. |
[ Li Zhiwei, Wang Chao, Chen Wei, et al. Biological characteristics of soil microorganisms in apple orchards with different ages[J]. Chinese Journal of Soil Science, 2011,42(2):302-306. ] | |
[18] | 杨青, 何清. 塔里木河流域下游的气候变化与生态环境[J]. 新疆气象, 2000,23(3):11-14. |
[ Yang Qing, He Qing. Relationship between climate change and ecological environment in the lower reaches of Tarim River Basin[J]. Bimonthly of Xinjiang Meteorology, 2000,23(3):11-14. ] | |
[19] | 王世绩, 陈炳浩, 李护群. 胡杨林[M]. 北京: 中国环境科学出版社, 1995. |
[ Wang Shiji, Chen Binghao, Li Huqun. Populus euphratica forest[M]. Beijing: China Environmental Science Press, 1995. ] | |
[20] | 鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2000. |
[ Bao Shidan. Soil and agricultural chemistry analysis[M]. Beijing: China Agriculture Press, 2000. ] | |
[21] | Walters W, Hyde E R, Berg-Lyons D, et al. Improved bacterial 16S rRNA gene (V4 and V4-5) and fungal internal transcribed spacer marker gene primers for microbial community surveys[J]. mSystems, 2016,1(1):9-15. |
[22] | 王巍琦, 李变变, 张军, 等. 干旱区不同类型盐碱土壤细菌群落多样性[J]. 干旱区研究, 2019,36(5):1202-1211. |
[ Wang Weiqi, Li Bianbian, Zhang Jun, et al. Diversity of bacterium communities in saline or alkaline soil in arid area[J]. Arid Zone Research, 2019,36(5):1202-1211. ] | |
[23] | 丁丽, 冀玉良, 李懿. 不同林龄油松根际土壤微生物群落多样性及其影响因子[J]. 水土保持研究, 2020,27(4):184-191, 200. |
[ Din Li, Ji Yuliang, Li Yi. Soil microbial diversity and its influencing factors in rhizosphere and non-rhizosphere in the stands of Pinus tabuliformis with different ages in Minjiang River valley[J]. Research of Soil and Water Conservation, 2020,27(4):184-191, 200. ] | |
[24] | 高瑜莲, 柳锦宝, 柳维扬, 等. 近14 a新疆南疆绿洲地区地表蒸散与干旱的时空变化特征研究[J]. 干旱区地理, 2019,42(4):830-837. |
[ Gao Yulian, Liu Jinbao, Liu Weiyang, et al. Spatio-temporal variation characteristics of surface evapotranspiration and drought at the oasis area of the southern Xinjiang in recent 14 years[J]. Arid Land Geography, 2019,42(4):830-837. ] | |
[25] | 关添泽, 于萌, 卢刚, 等. 基于分形维数的不同发育阶段胡杨对土壤理化性质的影响[J]. 江苏农业科学, 2020,48(20):293-300. |
[ Guan Tianze, Yu Meng, Lu Gang, et al. Effects of different developmental stages of Populus euphratica on soil physical and chemical properties based on fractal dimension[J]. Jiangsu Agricultural Science, 2020,48(20):293-300. ] | |
[26] | Walters W A, Jin Z, Youngblut N, et al. Large-scale replicated field study of maize rhizosphere identifies heritable microbes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018,115(28):7368-7373. |
[27] |
Tian P, Razavi B S, Zhang X C, et al. Microbial growth and enzyme kinetics in rhizosphere hotspots are modulated by soil organics and nutrient availability[J]. Soil Biology and Biochemistry, 2020,141:107662, doi: 10.1016/j.soilbio.2019.107662.
doi: 10.1016/j.soilbio.2019.107662 |
[28] |
Zhang R F, Vivanco J M, Shen Q R. The unseen rhizosphere root-soil-microbe interactions for crop production[J]. Current Opinion in Microbiology, 2017,37:8-14.
doi: 10.1016/j.mib.2017.03.008 |
[29] |
Orlando J, Alfaro M, Bravo L, et al. Bacterial diversity and occurrence of ammonia-oxidizing bacteria in the Atacama Desert soil during a “desert bloom” event[J]. Soil Biology & Biochemistry, 2010,42(7):1183-1188.
doi: 10.1016/j.soilbio.2010.03.025 |
[30] |
Nagy M L, Alejandro P, Garcia-Pichel F. The prokaryotic diversity of biological soil crusts in the Sonoran Desert organ pipe cactus national monument[J]. Fems Microbiology Ecology, 2010,54(2):233-245.
doi: 10.1016/j.femsec.2005.03.011 |
[31] | 程冬梅, 唐雅丽, 张坤迪, 等. 新疆天然胡杨林地区根际微生物的种群分析[J]. 生态科学, 2013,32(6):711-717. |
[ Cheng Dongmei, Tang Yali, Zhang Kundi, et al. Analysis of bacterial community isolated from rhizosphere of the natural euphrates poplar forest[J]. Ecological Science, 2013,32(6):711-717. ] |
[1] | ZHANG Qifei, CHEN Yaning, SUN Congjian, XIANG Yanyun, HAO Haichao. Changes in terrestrial water storage and evaluation of oasis ecological security in the Tarim River Basin [J]. Arid Land Geography, 2024, 47(1): 1-14. |
[2] | WU Xiaodan, LUO Min, MENG Fanhao, SA Chula, DONG Jinyi, LIU Tie. Evolution law and causes of floods in the four sources streams of Tarim River [J]. Arid Land Geography, 2024, 47(1): 15-27. |
[3] | MU Jiawei, QIAO Baorong, YU Guoxin. Spatial and temporal patterns of agricultural low-carbon productivity and its influence effects in the counties of Tarim River Basin, Xinjiang [J]. Arid Land Geography, 2023, 46(6): 968-981. |
[4] | ZHANG Jiudan, LI Junli, BAO Anming, BAI Jie, LIU Tie, HUANG Yue. Effectiveness assessment of ecological restoration of Populus euphratica forest in the Tarim River Basin during 2013—2020 [J]. Arid Land Geography, 2022, 45(6): 1824-1835. |
[5] | LIU Xia,ZHANG Man,XU Jianhua,GUO Ying,DUAN Weili,SHEN Yanjun. Water resources carrying capacity of Tarim River Basin based on system dynamics model [J]. Arid Land Geography, 2021, 44(5): 1407-1416. |
[6] | WANG Shiming,FAN Jinlong,ZHAO Ying,ZHANG Taotao,LI Shengyu. Numerical simulation of water and salt migration in desert soil in the lower reaches of Tarim River under salt-water irrigation [J]. Arid Land Geography, 2021, 44(4): 1104-1113. |
[7] | CHEN Yaning,Wumaierjiang Wubuli,Aikeremu Abula,CHENG Yong,CHEN Yapeng,HAO Xingming,ZHU Chenggang,WANG Yang. Monitoring and analysis of ecological benefits of water conveyance in the lower reaches of Tarim River in recent 20 years [J]. Arid Land Geography, 2021, 44(3): 605-611. |
[8] | CHEN Yapeng,ZHOU Honghua,ZHU Chenggang. A review of water transport processes of Populus euphratica in the lower reaches of Tarim River [J]. Arid Land Geography, 2021, 44(3): 612-619. |
[9] | FU Aihong,CHENG Yong,LI Weihong,ZHU Chenggang,CHEN Yapeng. Effects of ecological water conveyance on ecological resilience of desert riparian forests in the lower reaches of Tarim River [J]. Arid Land Geography, 2021, 44(3): 620-628. |
[10] | ZHU Chenggang,Aikeremu Abula,LI Weihong,ZHOU Honghua. Ecosystem restoration of Populus euphratica forest under the ecological water conveyance in the lower reaches of Tarim River [J]. Arid Land Geography, 2021, 44(3): 629-636. |
[11] | YANG Yuhai,ZHU Chenggang,WANG Yang,ZHOU Honghua. Effects of ecological water conveyance on carbon cycle of Populus euphratica forest ecosystem in the lower reaches of Tarim River [J]. Arid Land Geography, 2021, 44(3): 637-642. |
[12] | CHEN Yongjin,Aikeremu Abula,ZHANG Tianju,CHEN Yapeng,ZHU Chenggang,CHENG Yong,LIU Lu,LI Xiaoyang,ZHANG Qifei. Effects of ecological water conveyance on groundwater depth in the lower reaches of Tarim River [J]. Arid Land Geography, 2021, 44(3): 651-658. |
[13] | DI Zhenhua,XIE Zhenghui,CHEN Yaning. Estimation of riparian groundwater table depth in the lower reaches of Tarim River under long-term water conveyance [J]. Arid Land Geography, 2021, 44(3): 659-669. |
[14] | WANG Wanrui,Aikeremu Abula,CHEN Yaning,ZHU Chenggang,CHEN Yapeng. Groundwater recharge during ecological water conveyance in the lower reaches of Tarim River [J]. Arid Land Geography, 2021, 44(3): 670-680. |
[15] | ZOU Shan,Jilili Abuduwaili,HUANG Wenjing,DUAN Weili. Effects of ecological water conveyance on changes of surface water area in the lower reaches of Tarim River [J]. Arid Land Geography, 2021, 44(3): 681-690. |
|