Arid Land Geography ›› 2024, Vol. 47 ›› Issue (1): 1-14.doi: 10.12118/j.issn.1000-6060.2023.247
• Climatology and Hydrology • Previous Articles Next Articles
ZHANG Qifei1,2(),CHEN Yaning2,SUN Congjian1,2(),XIANG Yanyun3,HAO Haichao4
Received:
2023-05-29
Revised:
2023-06-25
Online:
2024-01-25
Published:
2024-01-26
ZHANG Qifei, CHEN Yaning, SUN Congjian, XIANG Yanyun, HAO Haichao. Changes in terrestrial water storage and evaluation of oasis ecological security in the Tarim River Basin[J].Arid Land Geography, 2024, 47(1): 1-14.
Tab. 1
Hydrological information of main rivers in the oases of the Tarim River Basin"
水系序号 | 流域 | 绿洲范围面积/km2 | 水文站 | 流域面积/km2 | 年均径流量/108 m3 | 冰川占比/% |
---|---|---|---|---|---|---|
1 | 开孔河(开都河-博斯腾湖) | 6901.08 | 大山口 | 19022 | 41.65 | 1.21 |
开孔河(孔雀河) | 4074.80 | 塔什店 | 33200 | 14.44 | 0.00 | |
2 | 迪那河 | 1882.67 | 迪那河 | 5193 | 1.95 | 0.43 |
3 | 渭干-库车河 | 9415.49 | 黑孜、卡拉苏、拜城、卡木鲁克、破城子、托克逊 | 10774 | 29.67 | 15.12 |
4 | 阿克苏河 | 15634.70 | 协合拉、沙里桂兰克 | 50000 | 79.89 | 3.52 |
5 | 喀什噶尔河 | 16025.20 | 恰其嘎、卡浪沟吕克、维他克、克勒克、卡拉贝利、沙曼 | 28659 | 66.52 | 5.80 |
6 | 叶尔羌河 | 17410.10 | 卡群 | 50248 | 67.85 | 1.45 |
7 | 和田河 | 9066.15 | 乌鲁瓦提、同古孜洛克 | 34558 | 46.08 | 5.34 |
8 | 策勒-克里雅河 | 4115.07 | 策勒 | 9390 | 9.78 | 5.23 |
9 | 车尔臣河 | 5408.91 | 且末 | 26822 | 6.63 | 1.98 |
[1] | Sun F, Wang Y, Chen Y N, et al. Historic and simulated desert-oasis ecotone changes in the arid Tarim River Basin, China[J]. Remote Sensing, 2021, 13(4): 647, doi: 10.3390/rs13040647. |
[2] |
Huang J, Ji F. Effects of climate change on phenological trends and seed cotton yields in oasis of arid regions[J]. International Journal of Biometeorology, 2015, 59(7): 877-888.
doi: 10.1007/s00484-014-0904-7 pmid: 25240389 |
[3] | Hao X M, Hao H C, Zhang J J. Soil moisture influenced the variability of air temperature and oasis effect in a large inland basin of an arid region[J]. Hydrological Process, 2021, 35(6), e14246, doi: 10.1002/hyp.14246. |
[4] |
Li C J, Fu B J, Wang S, et al. Drivers and impacts of changes in China’s drylands[J]. Nature Reviews Earth and Environment, 2021, 2(12): 858-873.
doi: 10.1038/s43017-021-00226-z |
[5] | 陈亚宁, 郝兴明, 陈亚鹏, 等. 新疆塔里木河流域水系连通与生态保护对策研究[J]. 中国科学院院刊, 2019, 34(10): 1156-1164. |
[Chen Yaning, Hao Xingming, Chen Yapeng, et al. Study on water system connectivity and ecological protection countermeasures of Tarim River Basin in Xinjiang[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(10): 1156-1164.] | |
[6] | 陈亚宁, 陈亚鹏, 朱成刚, 等. 西北干旱荒漠区生态系统可持续管理理念与模式[J]. 生态学报, 2019, 39(20): 7410-7417. |
[Chen Yaning, Chen Yapeng, Zhu Chenggang, et al. The concept and mode of ecosystem sustainable management in arid desert areas in northwest China[J]. Acta Ecologica Sinica, 2019, 39(20): 7410-7417.] | |
[7] |
陈亚宁, 李稚, 方功焕, 等. 气候变化对中亚天山山区水资源影响研究[J]. 地理学报, 2017, 72(1): 18-26.
doi: 10.11821/dlxb201701002 |
[Chen Yaning, Li Zhi, Fang Gonghuan, et al. Impact of climate change on water resources in the Tianshan Mountians, Central Asia[J]. Acta Geographica Sinica, 2017, 72(1): 18-26.]
doi: 10.11821/dlxb201701002 |
|
[8] | Zhang Z T, Xu E Q, Zhang H Q. Complex network and redundancy analysis of spatial-temporal dynamic changes and driving forces behind changes in oases within the Tarim Basin in northwestern China[J]. Catena, 2021, 201: 105216, doi: 10.1016/j.catena.2021.105216. |
[9] | Li Z, Chen Y N, Zhang Q F, et al. Spatial patterns of vegetation carbon sinks and sources under water constraint in Central Asia[J]. Journal of Hydrology, 2020, 590: 125355, doi: 10.1016/j.jhydrol.2020.125355. |
[10] |
孙帆, 王弋, 陈亚宁. 塔里木盆地荒漠-绿洲过渡带动态变化及其影响因素[J]. 生态学杂志, 2020, 39(10): 3397-3407.
doi: 10.13292/j.1000-4890.202010.006 |
[Sun Fan, Wang Yi, Chen Yaning. Dynamics of desert-oasis ecotone and its influencing factors in Tarim Basin[J]. Chinese Journal of Ecology, 2020, 39(10): 3397-3407.]
doi: 10.13292/j.1000-4890.202010.006 |
|
[11] | Pei Z F, Fang S B, Yang W N, et al. The relationship between NDVI and climate factors at different monthly time scales: A case study of grasslands in Inner Mongolia, China (1982—2015)[J]. Sustainability, 2019, 11(24): 7243, doi: 10.3390/su11247243. |
[12] |
Liu Y, Li L H, Chen Xi, et al. Temporal-spatial variations and influencing factors of vegetation cover in Xinjiang from 1982 to 2013 based on GIMMS-NDVI3g[J]. Global and Planet Change, 2018, 169: 145-155.
doi: 10.1016/j.gloplacha.2018.06.005 |
[13] | Shi G, Ye P, Ding L, et al. Spatio-temporal patterns of land use and cover change from 1990 to 2010: A case study of Jiangsu Province, China[J]. International Journal of Environmental Research and Public Health, 2019, 16(6): 907, doi: 10.3390/ijerph16060907. |
[14] | Zhang J J, Hao X M, Hao H C, et al. Climate change decreased net ecosystem productivity in the arid region of Central Asia[J]. Remote Sensing, 2021, 13(21): 4449, doi: 10.3390/rs13214449. |
[15] | Gao P W, Kasimu A, Zhao Y Y, et al. Evaluation of the temporal and spatial changes of ecological quality in the Hami oasis based on RSEI[J]. Sustainability, 2020, 12(18): 7716, doi: 10.3390/su12187716. |
[16] |
Wang J, Liu D W, Ma J L, et al. Development of a large-scale remote sensing ecological index in arid areas and its application in the Aral Sea Basin[J]. Journal of Arid Land, 2021, 13(1): 40-55.
doi: 10.1007/s40333-021-0052-y |
[17] | 李鹏辉, 徐丽萍, 刘笑, 等. 基于三维生态足迹模型的天山北麓绿洲生态安全评价[J]. 干旱区研究, 2020, 37(5): 1337-1345. |
[Li Penghui, Xu Liping, Liu Xiao, et al. Ecological security evaluation of an oasis in the north of the Tianshan Mountains based on three-dimensional ecological footprint model[J]. Arid Zone Research, 2020, 37(5):1337-1345.] | |
[18] |
Fang G H, Yang J, Chen Y N, et al. How hydrologic processes differ spatially in a large basin: Multisite and multiobjective modeling in the Tarim River Basin[J]. Journal of Geophysical Research: Atmospheres, 2018, 123: 7098-7113.
doi: 10.1029/2018JD028423 |
[19] | Zhang Q F, Chen Y N, Li Z, et al. Recent changes in water discharge in snow and glacier melt-dominated rivers in the Tienshan Mountains, Central Asia[J]. Remote Sensing, 2020, 12(17): 2704, doi: 10.3390/rs12172704. |
[20] |
Potter C S, Randerson J T, Field C B, et al. Terrestrial ecosystem production: A process model based on global satellite and surface data[J]. Global Biogeochemical Cycles, 1993, 7(4): 811-841.
doi: 10.1029/93GB02725 |
[21] | Chen Y N, Li W H, Deng H J, et al. Changes in Central Asia’s water tower: Past, present and future[J]. Scientific Reports, 2016, 6: 35458, doi: 10.1038/srep35458. |
[22] |
Farinotti D, Longuevergne L, Moholdt G, et al. Substantial glacier mass loss in the Tien Shan over the past 50 years[J]. Nature Geoscience, 2015, 8(9): 716-722.
doi: 10.1038/NGEO2513 |
[23] |
Gao L, Deng H J, Lei X Y, et al. Evidence for elevation-dependent warming from the Chinese Tianshan Mountains[J]. Cryosphere, 2021, 15(12): 5765-5783.
doi: 10.5194/tc-15-5765-2021 |
[24] |
Liu J, Lawson D E, Hawley R L, et al. Estimating the longevity of glaciers in the Xinjiang region of the Tian Shan through observations of glacier area change since the Little Ice Age using high-resolution imagery[J]. Journal of Glaciology, 2020, 66(257): 471-484.
doi: 10.1017/jog.2020.24 |
[25] |
向燕芸, 陈亚宁, 张齐飞, 等. 天山开都河流域积雪、径流变化及影响因子分析[J]. 资源科学, 2018, 40(9): 1855-1865.
doi: 10.18402/resci.2018.09.15 |
[Xiang Yanyun, Chen Yaning, Zhang Qifei, el al. Trends of snow cover and streamflow variation in Kaidu River and their influential factors[J]. Resources Science, 2018, 40(9): 1855-1865.]
doi: 10.18402/resci.2018.09.15 |
|
[26] |
邓海军, 陈亚宁. 中亚天山山区冰雪变化及其对区域水资源的影响[J]. 地理学报, 2018, 73(7): 1309-1323.
doi: 10.11821/dlxb201807010 |
[Deng Haijun, Chen Yaning. The glacier and snow variations and their impact on water resources in mountain regions: A case study in Tianshan Mountains of Central Asia[J]. Acta Geographica Sinica, 2018, 73(7): 1309-1323.]
doi: 10.11821/dlxb201807010 |
|
[27] | Bonekamp P N J, Kok R J, Collier E, et al. Contrasting meteorological drivers of the glacier mass balance between the Karakoram and central Himalaya[J]. Frontiers in Earth Science, 2019, 7: 107, doi: 10.3389/feart.2019.00107. |
[28] | 李海娟. 近30年喀喇昆仑山东部北坡主要冰川变化的遥感监测[D]. 昆明: 云南大学, 2021. |
[Li Haijuan. Remote sensing study on main glacier changes in the past 30 years on the north slope of the eastern Karakoram[D]. Kunming: Yunnan University, 2021.] | |
[29] | Dimri A P. Decoding the Karakoram anomaly[J]. Science of the Total Environment, 2021, 788(7): 147864, doi: 10.1016/j.scitotenv.2021.147864. |
[30] |
Farinotti D, Immerzeel W W, de Kok R J, et al. Manifestations and mechanisms of the Karakoram glacier anomaly[J]. Nature Geoscience, 2020, 13(1): 8-16.
doi: 10.1038/s41561-019-0513-5 pmid: 31915463 |
[31] |
de Kok R J, Kraaijenbrink P D A, Tuinenburg O A, et al. Towards understanding the pattern of glacier mass balances in High Mountain Asia using regional climatic modelling[J]. The Cryosphere, 2020, 14(9): 3215-3234.
doi: 10.5194/tc-14-3215-2020 |
[32] | Zhang Y, An C B, Liu L Y, et al. High mountains becoming wetter while deserts getting drier in Xinjiang, China since the 1980s[J]. Land, 2021, 10(11): 1131, doi: 10.3390/land10111131. |
[33] | 李玉焦, 陈亚宁, 张齐飞, 等. 1960—2018年博斯腾湖水位变化特征及其影响因素分析[J]. 干旱区研究, 2021, 38(1): 48-58. |
[Li Yujiao, Chen Yaning, Zhang Qifei, et al. Analysis of the change in water level and its influencing factors on Bosten Lake from 1960 to 2018[J]. Arid Zone Research, 2021, 38(1): 48-58.] | |
[34] |
Deng H J, Chen Y N, Li Q H, et al. Loss of terrestrial water storage in the Tianshan Mountains from 2003 to 2015[J]. International Journal of Remote Sensing, 2019, 40(22): 8342-8358.
doi: 10.1080/01431161.2019.1608392 |
[35] | 陈亚宁, 吾买尔江·吾布力, 艾克热木·阿布拉, 等. 塔里木河下游近20 a输水的生态效益监测分析[J]. 干旱区地理, 2021, 44(3): 605-611. |
[Chen Yaning, Wubuli Wumaierjiang, Abula Aikeremu, et al. Monitoring and analysis of ecological benefits of water conveyance in the lower reaches of Tarim River in recent 20 a[J]. Arid Land Geography, 2021, 44(3): 605-611.] | |
[36] | 张久丹, 李均力, 包安明, 等. 2013—2020年塔里木河流域胡杨林生态恢复成效评估[J]. 干旱区地理, 2022, 45(6): 1824-1835. |
[Zhang Jiudan, Li Junli, Bao Anming, et al. Effectiveness assessment of ecological restoration of Populus euphratica forest in the Tarim River Basin during 2013—2020[J]. Arid Land Geography, 2022, 45(6): 1824-1835.] | |
[37] | 陈永金, 艾克热木·阿布拉, 张天举, 等. 塔里木河下游生态输水对地下水埋深变化的影响[J]. 干旱区地理, 2021, 44(3): 651-658. |
[Chen Yongjin, Abula Aikeremu, Zhang Tianju, et al. Effects of ecological water conveyance on groundwater depth in the lower reaches of Tarim River[J]. Arid Land Geography, 2021, 44(3): 651-658.] | |
[38] | 王振, 李均力, 张久丹, 等. 输水漫溢对塔里木河中游胡杨林恢复的影响[J]. 干旱区地理, 2023, 46(1): 94-102. |
[Wang Zhen, Li Junli, Zhang Jiudan, et al. Influences of ecological water conveyance on Populus euphratica forest restoration in the middle reaches of Tarim River[J]. Arid Land Geography, 2023, 46(1): 94-102.] | |
[39] | 张静静, 郝海超, 郝兴明, 等. 塔里木河下游生态输水对天然植被NPP的影响[J]. 干旱区地理, 2021, 44(3): 708-717. |
[Zhang Jingjing, Hao Haichao, Hao Xingming, et al. Effects of ecological water conveyance on NPP of natural vegetation in the lower reaches of Tarim River[J]. Arid Land Geography, 2021, 44(3): 708-717.] |
[1] | SHI Zhenjun, ZHU Xiufang, TANG Yijuan. Changes and influencing factors of terrestrial water storage in China based on GRACE satellite data [J]. Arid Land Geography, 2023, 46(9): 1397-1406. |
[2] | MU Jiawei, QIAO Baorong, YU Guoxin. Spatial and temporal patterns of agricultural low-carbon productivity and its influence effects in the counties of Tarim River Basin, Xinjiang [J]. Arid Land Geography, 2023, 46(6): 968-981. |
[3] | ZHANG Jiudan, LI Junli, BAO Anming, BAI Jie, LIU Tie, HUANG Yue. Effectiveness assessment of ecological restoration of Populus euphratica forest in the Tarim River Basin during 2013—2020 [J]. Arid Land Geography, 2022, 45(6): 1824-1835. |
[4] | LIU Xia,ZHANG Man,XU Jianhua,GUO Ying,DUAN Weili,SHEN Yanjun. Water resources carrying capacity of Tarim River Basin based on system dynamics model [J]. Arid Land Geography, 2021, 44(5): 1407-1416. |
[5] | LYU Ye,YANG Han,HUANG Yue,BAO Anming,ZAN Chanjuan,LI Wenjing. Spatiotemporal variation of terrestrial water storage in Aral Sea Basin [J]. Arid Land Geography, 2021, 44(4): 943-952. |
[6] |
SUN Tian-yao, LI Xue-mei, XU Min, ZHANG Meng-sheng.
Spatialtemporal variations of vegetation coverage in the Tarim River Basin from 2000 to 2018 [J]. Arid Land Geography, 2020, 43(2): 415-424. |
[7] | JIAO Wei, LIU Xin-ping, ZHANG Lin, LIANG Ling-xia. Ecological response to the land development in Tarim River Basin [J]. 干旱区地理, 2018, 41(6): 1396-1404. |
[8] | WANG Guang-yan, WANG Yuan-jian, GUI Dong-wei. A review on water resources research in Tarim River Basin [J]. 干旱区地理, 2018, 41(6): 1151-1159. |
[9] | CHEN Ya-ning, LI Wei-hong, CHEN Ya-peng, ZHU Cheng-gang. Science in supporting the ecological restoration and sustainable development of the Tarim River Basin [J]. 干旱区地理, 2018, 41(5): 901-907. |
[10] | WEI Guang-hui, GUI Dong-wei, ZHAO Xin-feng. Irrigation area carrying capacity in Tarim River Basin in different years [J]. 干旱区地理, 2018, 41(2): 230-237. |
[11] | HAN Qiang, XUE Lian-qing, LIU Yuan-hong, REN Lei. Hydrological responses to land use change in upper-middle reaches of the Tarim River Basin [J]. , 2017, 40(6): 1165-1170. |
[12] | DENG Ming-jiang, FAN Zi-li, XU Hai-liang, ZHOU Hai-ying. Ecological function regionalization of Tarim River Basin [J]. , 2017, 40(4): 705-717. |
[13] | ZHANG Peng-fei, Guli JIAPAER, BAO An-ming, MENG Fan-hao, GUO Hui, GUO Hao, LUO Min, HUANG Xiao-ran. Ecological effects evaluation for short term planning of the Tarim River [J]. , 2017, 40(1): 156-164. |
[14] | DENG Ming-jiang. Prospecting development of south Xinjiang: water strategy and problem of Tarim River Basin [J]. , 2016, 39(1): 1-11. |
[15] | ZHAO Jun, LIU Xin-ping, LIU Xiang-hui, TIAN Tong. Analysis on Coupling Coordination Degree Between Agriculture and Animal Husbandry Systems in Tarim River Basin [J]. , 2015, 38(5): 1077-1084. |
|